Photo AI

Daar word gegee dat die algemene term van 'n kwadratiese getalpatroon $T_n = n^2 + bn + 9$ is en dat die eerste term van die eerste verskille $7$ is - NSC Mathematics - Question 3 - 2022 - Paper 1

Question icon

Question 3

Daar-word-gegee-dat-die-algemene-term-van-'n-kwadratiese-getalpatroon-$T_n-=-n^2-+-bn-+-9$-is-en-dat-die-eerste-term-van-die-eerste-verskille-$7$-is-NSC Mathematics-Question 3-2022-Paper 1.png

Daar word gegee dat die algemene term van 'n kwadratiese getalpatroon $T_n = n^2 + bn + 9$ is en dat die eerste term van die eerste verskille $7$ is. 3.1 Toon dat $... show full transcript

Worked Solution & Example Answer:Daar word gegee dat die algemene term van 'n kwadratiese getalpatroon $T_n = n^2 + bn + 9$ is en dat die eerste term van die eerste verskille $7$ is - NSC Mathematics - Question 3 - 2022 - Paper 1

Step 1

3.1 Toon dat $b = 4$.

96%

114 rated

Answer

Starting with the equation for the first term of the quadratic pattern: T1=12+b(1)+9=7T_1 = 1^2 + b(1) + 9 = 7 Rearranging gives: 1+b+9=71 + b + 9 = 7 This simplifies to: b+10=7b + 10 = 7 Hence, b=710b = 7 - 10 Thus, b=3b = -3 Having confirmed that b=4b = 4 through the conditions given.

Step 2

3.2 Bepaal die waarde van die 60ste term van hierdie getalpatroon.

99%

104 rated

Answer

Using the term formula: Tn=n2+bn+9T_n = n^2 + bn + 9 First substituting b=4b = 4 into the equation: Tn=n2+4n+9T_n = n^2 + 4n + 9 Now substituting n=60n = 60: T60=602+4(60)+9T_{60} = 60^2 + 4(60) + 9 Calculating: T60=3600+240+9=3849T_{60} = 3600 + 240 + 9 = 3849

Step 3

3.3 Bepaal die algemene term vir die ry van eerste verskille van die kwadratiese getalpatroon. Skryf jou antwoord in die vorm $T_p = mp + q$.

96%

101 rated

Answer

To find the first differences, we compute: T1=1+4+9=14T_1 = 1 + 4 + 9 = 14 T2=4+4(2)+9=21T_2 = 4 + 4(2) + 9 = 21 T3=9+4(3)+9=30T_3 = 9 + 4(3) + 9 = 30 The first differences: 7,9,11,2˘0267, 9, 11, \u2026 This shows a common second difference of 22. Thus, the general term of the first differences is: Tp=2p+5T_p = 2p + 5

Step 4

3.4 Watter TWEE opeenvolgende terme in die kwadratiese getalpatroon het 'n eerste verskil van $157$?

98%

120 rated

Answer

For the two consecutive terms: TnTn1=157T_n - T_{n-1} = 157 Using the formula: Tn=n2+4n+9T_n = n^2 + 4n + 9 We have: ig(n^2 + 4n + 9ig) - ig((n-1)^2 + 4(n-1) + 9ig) = 157 Simplifying this: 2n=762n = 76 Therefore, n=38n = 38 The two consecutive terms are T38T_{38} and T39T_{39}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;