'n Meetkundige reeks het 'n konstante verhouding van
$rac{1}{2}$ en 'n som tot oneindigheid van 6 - NSC Mathematics - Question 3 - 2018 - Paper 1
Question 3
'n Meetkundige reeks het 'n konstante verhouding van
$rac{1}{2}$ en 'n som tot oneindigheid van 6.
3.1 Bereken die eerste term van die reeks.
3.2 Bereken die 8st... show full transcript
Worked Solution & Example Answer:'n Meetkundige reeks het 'n konstante verhouding van
$rac{1}{2}$ en 'n som tot oneindigheid van 6 - NSC Mathematics - Question 3 - 2018 - Paper 1
Step 1
Bereken die eerste term van die reeks.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
In a geometric series, the first term can be calculated using the sum formula for an infinite series:
S=1−ra
Given that the sum S is 6 and the common ratio r=21, we substitute these values in:
6=1−21a
This simplifies to:
6=21a
Cross-multiplying gives us:
a=6×21=3
Therefore, the first term of the series is a=3.
Step 2
Bereken die 8ste term van die reeks.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
The general formula for the nth term of a geometric series is:
Tn=arn−1
For n=8, substituting the known values:
T8=3(21)8−1=3(21)7=3×1281=1283
Thus, the 8th term of the series is T8=1283.
Step 3
Bereken die waarde van n.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We know:
∑k=1n3(2)k=5.8125
This is a geometric series with first term a=3(2)1 and common ratio r=2. The sum of the first n terms is given by:
Sn=1−ra(1−rn)
Substituting a and r results in:
Sn=1−23(2)(1−2n)=3(2)(1−2n)=6(1−2n)
Setting this equal to 5.8125 and solving for n gives:
6(1−2n)=5.8125⟹1−2n=65.8125=0.96875
Thus:
2n=1−0.96875=0.03125=321⟹n=5
Step 4
skryf $\sum_{k=1}^{20} 24(2)^{k}$ in terme van p neer.
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
The expression can be expanded as follows:
∑k=12024(2)k=24∑k=120(2)k=24(2+22+…+220)
Utilizing the sum formula for a geometric series, we find:
∑k=120(2)k=1−ra(1−rn)
Where a=2, r=2, and n=20:
∑k=120(2)k=21−21−220=2(220−1)=221−2
Thus:
∑k=12024(2)k=24(221−2)=24⋅2(220−1)=48(220−1)
Since p=6−p=4, we express:
4p=48(220−1)