Photo AI

'n Meetkundige reeks het 'n konstante verhouding van $ rac{1}{2}$ en 'n som tot oneindigheid van 6 - NSC Mathematics - Question 3 - 2018 - Paper 1

Question icon

Question 3

'n-Meetkundige-reeks-het-'n-konstante-verhouding-van--$-rac{1}{2}$-en-'n-som-tot-oneindigheid-van-6-NSC Mathematics-Question 3-2018-Paper 1.png

'n Meetkundige reeks het 'n konstante verhouding van $ rac{1}{2}$ en 'n som tot oneindigheid van 6. 3.1 Bereken die eerste term van die reeks. 3.2 Bereken die 8st... show full transcript

Worked Solution & Example Answer:'n Meetkundige reeks het 'n konstante verhouding van $ rac{1}{2}$ en 'n som tot oneindigheid van 6 - NSC Mathematics - Question 3 - 2018 - Paper 1

Step 1

Bereken die eerste term van die reeks.

96%

114 rated

Answer

In a geometric series, the first term can be calculated using the sum formula for an infinite series: S=a1rS = \frac{a}{1 - r} Given that the sum SS is 6 and the common ratio r=12r = \frac{1}{2}, we substitute these values in: 6=a1126 = \frac{a}{1 - \frac{1}{2}} This simplifies to: 6=a126 = \frac{a}{\frac{1}{2}} Cross-multiplying gives us: a=6×12=3a = 6 \times \frac{1}{2} = 3 Therefore, the first term of the series is a=3a = 3.

Step 2

Bereken die 8ste term van die reeks.

99%

104 rated

Answer

The general formula for the nthn^{th} term of a geometric series is: Tn=arn1T_n = ar^{n-1} For n=8n = 8, substituting the known values: T8=3(12)81=3(12)7=3×1128=3128T_8 = 3 \left( \frac{1}{2} \right)^{8-1} = 3 \left( \frac{1}{2} \right)^{7} = 3 \times \frac{1}{128} = \frac{3}{128} Thus, the 8th term of the series is T8=3128T_8 = \frac{3}{128}.

Step 3

Bereken die waarde van n.

96%

101 rated

Answer

We know: k=1n3(2)k=5.8125\sum_{k=1}^{n} 3(2)^{k} = 5.8125 This is a geometric series with first term a=3(2)1a = 3(2)^{1} and common ratio r=2r = 2. The sum of the first nn terms is given by: Sn=a(1rn)1rS_n = \frac{a(1 - r^{n})}{1 - r} Substituting aa and rr results in: Sn=3(2)(12n)12=3(2)(12n)=6(12n)S_n = \frac{3(2)(1 - 2^n)}{1 - 2} = 3(2)(1 - 2^n) = 6(1 - 2^n) Setting this equal to 5.8125 and solving for nn gives: 6(12n)=5.8125    12n=5.81256=0.968756(1 - 2^n) = 5.8125 \implies 1 - 2^n = \frac{5.8125}{6} = 0.96875 Thus: 2n=10.96875=0.03125=132    n=52^n = 1 - 0.96875 = 0.03125 = \frac{1}{32} \implies n = 5

Step 4

skryf $\sum_{k=1}^{20} 24(2)^{k}$ in terme van p neer.

98%

120 rated

Answer

The expression can be expanded as follows: k=12024(2)k=24k=120(2)k=24(2+22++220)\sum_{k=1}^{20} 24(2)^{k} = 24 \sum_{k=1}^{20} (2)^{k} = 24(2 + 2^2 + \ldots + 2^{20}) Utilizing the sum formula for a geometric series, we find: k=120(2)k=a(1rn)1r\sum_{k=1}^{20} (2)^{k} = \frac{a(1 - r^{n})}{1 - r} Where a=2a = 2, r=2r = 2, and n=20n = 20: k=120(2)k=2122012=2(2201)=2212\sum_{k=1}^{20} (2)^{k} = 2 \frac{1 - 2^{20}}{1 - 2} = 2(2^{20} - 1) = 2^{21} - 2 Thus: k=12024(2)k=24(2212)=242(2201)=48(2201)\sum_{k=1}^{20} 24(2)^{k} = 24(2^{21} - 2) = 24 \cdot 2(2^{20} - 1) = 48(2^{20} - 1) Since p=6p=4p = 6 - p = 4, we express: 4p=48(2201)4p = 48(2^{20} - 1)

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;