Photo AI

10.1 Die gebeurtenisse A en B is onafhanklik - NSC Mathematics - Question 10 - 2016 - Paper 1

Question icon

Question 10

10.1-Die-gebeurtenisse-A-en-B-is-onafhanklik-NSC Mathematics-Question 10-2016-Paper 1.png

10.1 Die gebeurtenisse A en B is onafhanklik. P(A) = 0,4 en P(B) = 0,5. Bepaal: 10.1.1 P(A en B) 10.1.2 P(A or B) 10.1.3 P(nie A en nie B) 10.2 Twee identiese sa... show full transcript

Worked Solution & Example Answer:10.1 Die gebeurtenisse A en B is onafhanklik - NSC Mathematics - Question 10 - 2016 - Paper 1

Step 1

10.1.1 P(A en B)

96%

114 rated

Answer

Since events A and B are independent, the probability of both events occurring simultaneously can be calculated using the formula:

P(A and B)=P(A)×P(B)P(A \text{ and } B) = P(A) \times P(B)

Substituting in the values: P(A and B)=0.4×0.5=0.2P(A \text{ and } B) = 0.4 \times 0.5 = 0.2

Step 2

10.1.2 P(A or B)

99%

104 rated

Answer

To find the probability of either event A or event B occurring, we use the formula:

P(A or B)=P(A)+P(B)P(A and B)P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)

Substituting the values: P(A or B)=0.4+0.50.2=0.7P(A \text{ or } B) = 0.4 + 0.5 - 0.2 = 0.7

Step 3

10.1.3 P(nie A en nie B)

96%

101 rated

Answer

The probability of neither event A nor event B occurring can be found by:

P(nieA and nieB)=1P(A or B)P(nie A \text{ and } nie B) = 1 - P(A \text{ or } B)

Using the previously calculated probability: P(nieA and nieB)=10.7=0.3P(nie A \text{ and } nie B) = 1 - 0.7 = 0.3

Step 4

10.2.1 Stel die inligting deur middel van 'n boomdiagram voor.

98%

120 rated

Answer

To illustrate the probabilities with a tree diagram, we can follow these logic branches:

  1. Choose a Bag:

    • Probability of choosing Bag A: 0.5
    • Probability of choosing Bag B: 0.5
  2. Choosing a Ball from Bag A: (3 pink, 2 yellow)

    • Probability of pink from A: ( \frac{3}{5} = 0.6 )
    • Probability of yellow from A: ( \frac{2}{5} = 0.4 )
  3. Choosing a Ball from Bag B: (5 pink, 4 yellow)

    • Probability of pink from B: ( \frac{5}{9} )
    • Probability of yellow from B: ( \frac{4}{9} )

This gives us a complete tree representation of all outcomes.

Step 5

10.2.2 Wat is die waarskynlikheid dat 'n geel bal uit Sak A gekies word?

97%

117 rated

Answer

The probability of selecting a yellow ball from Bag A can be calculated using: P(yellow from A)=P(choosingA)×P(yellowA)P(yellow \text{ from } A) = P(choosing A) \times P(yellow | A) Substituting the values: P(yellow from A)=0.5×0.4=0.2P(yellow \text{ from } A) = 0.5 \times 0.4 = 0.2

Step 6

10.2.3 Wat is die waarskynlikheid dat 'n pienk bal gekies word?

97%

121 rated

Answer

The probability of selecting a pink ball can be calculated as follows:

  1. From Bag A: P(pink from A)=P(choosingA)×P(pinkA)=0.5×0.6=0.3P(pink \text{ from } A) = P(choosing A) \times P(pink | A) = 0.5 \times 0.6 = 0.3

  2. From Bag B: P(pink from B)=P(choosingB)×P(pinkB)=0.5×59=5180.278P(pink \text{ from } B) = P(choosing B) \times P(pink | B) = 0.5 \times \frac{5}{9} = \frac{5}{18} \approx 0.278

Adding these probabilities gives: P(pink)=P(pink from A)+P(pink from B)=0.3+0.2780.578P(pink) = P(pink \text{ from } A) + P(pink \text{ from } B) = 0.3 + 0.278 \approx 0.578

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;