Photo AI

AB is a vertical flagpole that is $oxed{ ext{}} rac{ ext{s}}{ ext{ } ext{ } ext{ } ext{ } } ext{m} ext{ } ext{ } ext{ }$ long - NSC Mathematics - Question 7 - 2022 - Paper 2

Question icon

Question 7

AB-is-a-vertical-flagpole-that-is-$oxed{-ext{}}-rac{-ext{s}}{-ext{-}-ext{-}-ext{-}-ext{-}-}-ext{m}-ext{-}-ext{-}-ext{-}$-long-NSC Mathematics-Question 7-2022-Paper 2.png

AB is a vertical flagpole that is $oxed{ ext{}} rac{ ext{s}}{ ext{ } ext{ } ext{ } ext{ } } ext{m} ext{ } ext{ } ext{ }$ long. AC and AD are two cables anchoring t... show full transcript

Worked Solution & Example Answer:AB is a vertical flagpole that is $oxed{ ext{}} rac{ ext{s}}{ ext{ } ext{ } ext{ } ext{ } } ext{m} ext{ } ext{ } ext{ }$ long - NSC Mathematics - Question 7 - 2022 - Paper 2

Step 1

7.1 Determine the length of AD in terms of p

96%

114 rated

Answer

To find the length of ADAD, we can use the Pythagorean theorem.

The length of ADAD is given by: AD2=AB2+BD2AD^2 = AB^2 + BD^2 Substituting the values, we have: AD2=(5p)2+(2p)2AD^2 = (\sqrt{5p})^2 + (2p)^2 AD2=5p+4p2AD^2 = 5p + 4p^2 Combining terms, we find: AD=9p2=3pAD = \sqrt{9p^2} = 3p

Step 2

7.2 Show that CD = \frac{3p(sin(x) + cos x)}{\sqrt{2}sin(x)}

99%

104 rated

Answer

Using the sine rule in triangle ACDACD, we relate the sides to their opposite angles: CDsin(135x)=ADsin(45)\frac{CD}{sin(135^{\circ}-x)} = \frac{AD}{sin(45^{\circ})} Since we found AD=3pAD = 3p, we rearrange: CD=3psin(135x)sin(45)CD = 3p \frac{sin(135^{\circ} - x)}{sin(45^{\circ})} Applying the compound angle identity: CD=3p(sin(135)cos(x)cos(135)sin(x))22CD = \frac{3p(sin(135^{\circ})cos(x) - cos(135^{\circ})sin(x))}{\frac{\sqrt{2}}{2}} Factoring out yields: CD=3p2(cos(x)+sin(x))2=3p(sin(x)+cos(x))2sin(x)CD = \frac{3p\sqrt{2}(cos(x) + sin(x))}{2} = \frac{3p(sin(x) + cos(x))}{\sqrt{2}sin(x)}

Step 3

7.3 If it is further given that p = 10 and x = 110^{\circ}, calculate the area of \triangle ADC

96%

101 rated

Answer

To find the area of triangle ADCADC, we can use the formula: Area=12ADCDsin(A)Area = \frac{1}{2}AD \cdot CD \cdot sin(A) Substituting the known values: Area=12(3p)(CD)(sin(45))Area = \frac{1}{2}(3p)(CD)(sin(45^{\circ})) Given p=10p = 10: Area=12(30)(3(10)(sin(110)+cos(110))2sin(110))sin(45)Area = \frac{1}{2}(30)(\frac{3(10)(sin(110^{\circ}) + cos(110^{\circ}))}{\sqrt{2}sin(110^{\circ})})sin(45^{\circ}) After calculating: Area=143.11m2Area = 143.11 m^2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;