Photo AI

Determine, WITHOUT using a calculator, the value of: 5.1.1 tan θ 5.1.2 sin(−θ) 5.1.3 a 5.2 5.2.1 Simplify \( 4 \sin x \cos x \) to a single trigonometric ratio - NSC Mathematics - Question 5 - 2016 - Paper 2

Question icon

Question 5

Determine,-WITHOUT-using-a-calculator,-the-value-of:--5.1.1-tan-θ--5.1.2-sin(−θ)--5.1.3-a--5.2--5.2.1-Simplify-\(-4-\sin-x-\cos-x-\)-to-a-single-trigonometric-ratio-NSC Mathematics-Question 5-2016-Paper 2.png

Determine, WITHOUT using a calculator, the value of: 5.1.1 tan θ 5.1.2 sin(−θ) 5.1.3 a 5.2 5.2.1 Simplify \( 4 \sin x \cos x \) to a single trigonometric ratio.... show full transcript

Worked Solution & Example Answer:Determine, WITHOUT using a calculator, the value of: 5.1.1 tan θ 5.1.2 sin(−θ) 5.1.3 a 5.2 5.2.1 Simplify \( 4 \sin x \cos x \) to a single trigonometric ratio - NSC Mathematics - Question 5 - 2016 - Paper 2

Step 1

5.1.1 tan θ

96%

114 rated

Answer

To find ( \tan \theta ), we use the coordinates of point P (( -\sqrt{7}, 3 )). The tangent function is defined as:

tanθ=oppositeadjacent\tan \theta = \frac{\text{opposite}}{\text{adjacent}}

In this case:

tanθ=37=37\tan \theta = \frac{3}{-\sqrt{7}} = -\frac{3}{\sqrt{7}}

Step 2

5.1.2 sin(−θ)

99%

104 rated

Answer

Using the property of sine, we have:

sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta)

From our previous calculation, since ( \sin \theta = \frac{3}{4} ), we find:

sin(θ)=34\sin(-\theta) = -\frac{3}{4}

Step 3

5.1.3 a

96%

101 rated

Answer

Given that ( a = \frac{\cos 2\theta}{6} ), we can use the double angle formula for cosine:

cos(2θ)=2cos2(θ)1\cos(2\theta) = 2\cos^2(\theta) - 1

We first need ( \cos \theta ):

Knowing ( \sin^2 \theta + \cos^2 \theta = 1 ), we can calculate:

cos2θ=1(34)2=1916=716\cos^2 \theta = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16}

Thus,

cosθ=716=74\cos \theta = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4}

Now substituting into the cosine double angle formula:

cos(2θ)=2(74)21=2×7161=781=18\cos(2\theta) = 2\left(-\frac{\sqrt{7}}{4}\right)^2 - 1 = 2\times\frac{7}{16} - 1 = \frac{7}{8} - 1 = -\frac{1}{8}

Therefore:

a=6×(18)=34a = 6 \times \left(-\frac{1}{8}\right) = -\frac{3}{4}

Step 4

5.2.1 Simplify \( 4 \sin x \cos x \) to a single trigonometric ratio.

98%

120 rated

Answer

Using the double angle identity:

4sinxcosx=2sin(2x)4 \sin x \cos x = 2 \sin(2x)

Step 5

5.2.2 Hence, calculate the value of \( \frac{4 \sin 15^{\circ} \cos 15^{\circ}}{2 \sin 15^{\circ} - 1} \) WITHOUT using a calculator.

97%

117 rated

Answer

Substituting our previous finding into this expression,

4sin15cos152sin151=2sin(30)2sin151\frac{4 \sin 15^{\circ} \cos 15^{\circ}}{2 \sin 15^{\circ} - 1} = \frac{2 \sin(30^{\circ})}{2 \sin 15^{\circ} - 1}

We know that:

sin(30)=12\sin(30^{\circ}) = \frac{1}{2}

Thus,

=12(2sin151)= \frac{1}{2(2 \sin 15^{\circ} - 1)}

Substituting the known value of ( \sin 15^{\circ} = \frac{\sqrt{3}}{4} ):

Hence, simplifying gives:

=2tan(215)=2tan(30)=2×13=23= 2 \tan(2 \cdot 15^{\circ}) = 2 \tan(30^{\circ}) = 2 \times \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;