Photo AI

5.2 In die diagram is P(3 ; t) 'n punt in die Cartesiese vlak - NSC Mathematics - Question 5 - 2017 - Paper 2

Question icon

Question 5

5.2-In-die-diagram-is-P(3-;-t)-'n-punt-in-die-Cartesiese-vlak-NSC Mathematics-Question 5-2017-Paper 2.png

5.2 In die diagram is P(3 ; t) 'n punt in die Cartesiese vlak. OP = √34 en HÖP - β is 'n inspringende (refleks-) hoek. Sonder die gebruik van 'n sakrekenaar, bepaal... show full transcript

Worked Solution & Example Answer:5.2 In die diagram is P(3 ; t) 'n punt in die Cartesiese vlak - NSC Mathematics - Question 5 - 2017 - Paper 2

Step 1

5.2.1 t

96%

114 rated

Answer

To find the value of tt, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (OP) is equal to the sum of the squares of the other two sides. Here, we have:

OP2=OH2+HP2OP^2 = OH^2 + HP^2

Given that OP=34OP = \sqrt{34}, we can now set up our equation:

34=(3)2+(t)234 = (3)^2 + (t)^2

Simplifying further:

34=9+t234 = 9 + t^2 t2=349t^2 = 34 - 9 t2=25t^2 = 25 t=25=5t = \sqrt{25} = 5

Step 2

5.2.2 tan β

99%

104 rated

Answer

The tangent of angle β can be defined as the ratio of the opposite side to the adjacent side in a right triangle. Thus, for angle β:

tanβ=oppositeadjacent=3t\tan \beta = \frac{opposite}{adjacent} = \frac{3}{t}

Substituting the value of tt found in the previous part:

tanβ=35\tan \beta = \frac{3}{5}

Step 3

5.2.3 cos 2β

96%

101 rated

Answer

To find cos2β\, \, cos \, 2β, we can use the double angle formula for cosine:

cos2β=2cos2β1\cos 2β = 2\cos^2 \beta - 1

First, we need to find cosβ\cos \beta. From the tangent value, we can derive:

cosβ=adjacenthypotenuse=tOP=534\cos \beta = \frac{adjacent}{hypotenuse} = \frac{t}{OP} = \frac{5}{\sqrt{34}}

Now we can square this value:

cos2β=(534)2=2534\cos^2 \beta = \left(\frac{5}{\sqrt{34}}\right)^2 = \frac{25}{34}

Substituting into the double angle formula:

cos2β=2(2534)1=50341=50343434=1634=817\cos 2β = 2 \left(\frac{25}{34}\right) - 1 = \frac{50}{34} - 1 = \frac{50}{34} - \frac{34}{34} = \frac{16}{34} = \frac{8}{17}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;