Photo AI

P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon - NSC Mathematics - Question 5 - 2016 - Paper 2

Question icon

Question 5

P(−√7;-3)-en-S(a;-b)-is-punte-in-die-Cartesiese-vlak-soos-in-die-diagram-hieronder-getoon-NSC Mathematics-Question 5-2016-Paper 2.png

P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon. PØR = PØS = θ en OS = 6. Bepaal, SONDERS die gebruik van 'n sakrekenaar, ... show full transcript

Worked Solution & Example Answer:P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon - NSC Mathematics - Question 5 - 2016 - Paper 2

Step 1

5.1.1 tan θ

96%

114 rated

Answer

From the coordinates of point P, we have:

tanθ=oppositeadjacent=37tan θ = \frac{opposite}{adjacent} = \frac{3}{\sqrt{7}}

Thus, the value of tanθ=37tan θ = \frac{3}{\sqrt{7}}.

Step 2

5.1.2 sin(−θ)

99%

104 rated

Answer

Using the property of sine, we find:

sin(θ)=sin(θ)sin(−θ) = −sin(θ)

With sin(θ)=34sin(θ) = \frac{3}{4} (from previous calculations), therefore:

sin(θ)=34.sin(−θ) = −\frac{3}{4}.

Step 3

5.1.3 α

96%

101 rated

Answer

To find α, we use the cosine relation:

a6=cos2θ\frac{a}{6} = cos 2θ

From the earlier calculations, we have: a=6(12sin2θ)=6(12(34)2)a = 6(1 - 2 sin^2 θ) = 6(1 - 2(\frac{3}{4})^2)

Calculating this gives:

a = 6(1 - 2(\frac{9}{16})) = 6(1 - \frac{18}{16}) = 6(−\frac{2}{16}) = -\frac{3\sqrt{7}}{4}.$$

Step 4

5.2.1 Vereenvoudig \frac{4sin x cos x}{2sin x - 1}

98%

120 rated

Answer

We first recognize:

4sinxcosx2sinx1=2sin2x2sinx1\frac{4sin x cos x}{2sin x - 1} = \frac{2sin 2x}{2sin x - 1}

This simplifies to:

2tan2x.2tan 2x.

Step 5

5.2.2 Bereken vervolgens die waarde van \frac{4sin15^{\circ}cos15^{\circ}}{2sin15^{\circ}-1}

97%

117 rated

Answer

Substituting the values:

4sin15cos152sin151=2tan2(15)\frac{4sin15^{\circ}cos15^{\circ}}{2sin15^{\circ}-1} = 2tan 2(15^{\circ})

Since tan(30)=13tan(30^{\circ}) = \frac{1}{\sqrt{3}}, we have:

=213=23.= 2 \cdot \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;