Photo AI
Question 7
Punt B, C en E lê in dieselfde horizontale vlak. ABCD is 'n reghoekige stuk plank. CDE is 'n driehoekige stuk plank met 'n regte hoek by C. Elk van die stukke plank ... show full transcript
Step 1
Answer
In triangle ABC, we can use the sine rule:
[ \frac{CE}{BC} = \frac{\sin \angle BEC}{\sin \angle CEB} ]
Given that ( \angle BEC = 30° ) and ( \angle CEB = 2x ), we have:
[ CE = \frac{BC \cdot \sin(30°)}{\sin(2x)} ]
Using the double angle formula for sine, ( \sin(2x) = 2 \sin x \cdot \cos x ), we can express CE as:
[ CE = \frac{BC \cdot \frac{1}{2}}{2 \sin x \cos x} = \frac{BC}{4 \sin x \cos x} ]
Next, in triangle ACD:
[DC = \tan \angle DCE = \frac{CE}{BC} = \frac{BC \cdot \sin(30°)}{\sin(2x)} \Rightarrow DC = \frac{CE \cdot \cos x}{\sin x}\Rightarrow DC = \frac{4 \sin x \cos x}{4}\Rightarrow DC = \frac{BC}{4 \cos x} ] Therefore, we have shown that ( DC = \frac{BC}{4 \cos x} ).
Step 2
Answer
Substituting ( x = 30° ) into our previous equation results in:
[ DC = \frac{BC}{4 \cos(30°)} = \frac{BC}{4 \cdot \frac{\sqrt{3}}{2}} = \frac{BC}{2\sqrt{3}} ]
Given that AB is equal to DC and also to BC, we can equate:
[ AB = DC = BC ]
This gives us the area of rectangle ABCD as:
[ Area = AB \cdot DC = (AB)(BC) = (AB)(3AB) = 3AB² ]
Thus, we have demonstrated that the area of ABCD equals to ( 3AB² ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered