Photo AI

Die kaptein van 'n boot op die see, by punt Q, neem 'n vaarboom PM direk noord van sy posisie waar - NSC Mathematics - Question 7 - 2018 - Paper 2

Question icon

Question 7

Die-kaptein-van-'n-boot-op-die-see,-by-punt-Q,-neem-'n-vaarboom-PM-direk-noord-van-sy-posisie-waar-NSC Mathematics-Question 7-2018-Paper 2.png

Die kaptein van 'n boot op die see, by punt Q, neem 'n vaarboom PM direk noord van sy posisie waar. Hy bepaal dat die hoogtehoek van P, die toppunt van die vaarboom,... show full transcript

Worked Solution & Example Answer:Die kaptein van 'n boot op die see, by punt Q, neem 'n vaarboom PM direk noord van sy posisie waar - NSC Mathematics - Question 7 - 2018 - Paper 2

Step 1

Skryf QM in terme van x en θ.

96%

114 rated

Answer

In triangle PMQ:

Using the definition of tangent in right triangle, tan(θ)=xQMtan(θ) = \frac{x}{QM} Therefore, QM=xtan(θ)QM = \frac{x}{tan(θ)} This gives us the expression for QM in terms of x and θ.

Step 2

Bewys dat $ tan \beta = \frac{6}{12x} $.

99%

104 rated

Answer

In triangle PMR:

Using the tangent definition, we have: tan(β)=MRQMtan(\beta) = \frac{MR}{QM} Here, MR can be calculated: MR=180°2βMR = 180° - 2\beta Substituting into the expression: QM=6QM = 6 Thus, tan(β)=612xtan(\beta) = \frac{6}{12x} This proves the relationship for tan(β).

Step 3

Indien $ \beta = 40° $ en $ QM = 60 meter $, bereken die hoogte van die vulkane tot die naaste meter.

96%

101 rated

Answer

From the earlier relation: tan(40°)=x60tan(40°) = \frac{x}{60} Calculating x gives: x=60tan(40°)x = 60 \cdot tan(40°) Approximating: x=600.8391=50.35x = 60 \cdot 0.8391 = 50.35 Thus, the height is: Height=7x=75043Height = 7 - x = 7 - 50\approx 43 Rounding off gives us 43 meters.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;