Photo AI

VRAAG 7 AB is 'n vertikale vlagpaal wat $\sqrt{5p}$ meter lank is - NSC Mathematics - Question 7 - 2022 - Paper 2

Question icon

Question 7

VRAAG-7--AB-is-'n-vertikale-vlagpaal-wat-$\sqrt{5p}$-meter-lank-is-NSC Mathematics-Question 7-2022-Paper 2.png

VRAAG 7 AB is 'n vertikale vlagpaal wat $\sqrt{5p}$ meter lank is. AC en AD is twee kabels wat die vlagpaal anker. B, C en D is in dieselfde horisontale vlak. BD = ... show full transcript

Worked Solution & Example Answer:VRAAG 7 AB is 'n vertikale vlagpaal wat $\sqrt{5p}$ meter lank is - NSC Mathematics - Question 7 - 2022 - Paper 2

Step 1

7.1 Bepaal die lengte van AD in terme van p.

96%

114 rated

Answer

Om die lengte van AD te bereken, gebruik ons die Pythagoras-sin aan:

AD2=AB2+BD2AD^2 = AB^2 + BD^2

Hier is:
AB=5pAB = \sqrt{5p}
BD=2pBD = 2p

Dus,
AD2=(5p)2+(2p)2AD^2 = (\sqrt{5p})^2 + (2p)^2
AD2=5p+4p2AD^2 = 5p + 4p^2
AD=3pAD = 3p

Step 2

7.2 Toon dat die lengte van CD $= \frac{3p(sin(x) + cos(x))}{\sqrt{2}sin(x)}$.

99%

104 rated

Answer

Om die lengte van CD te bereken, gebruik die sinusregel:

CD=3p(sin(135x))sin(x)CD = \frac{3p(sin(135^{\circ} - x))}{sin(x)}

Hieruit kan ons die volgende maak:
CD=3psin(135)cos(x)cos(135)sin(x)sin(x)CD = 3p\frac{sin(135^{\circ})cos(x) - cos(135^{\circ})sin(x)}{sin(x)}

Met sin(135)=22sin(135^{\circ}) = \frac{\sqrt{2}}{2} en cos(135)=22cos(135^{\circ}) = -\frac{\sqrt{2}}{2}, volg ons op:

CD=3p22(cos(x)+sin(x))sin(x)CD = 3p\frac{\frac{\sqrt{2}}{2}(cos(x) + sin(x))}{sin(x)} CD=3p2(cos(x)+sin(x))2sin(x)CD = 3p\frac{\sqrt{2}(cos(x) + sin(x))}{2sin(x)}

Step 3

7.3 Indien dit verder gegee word dat $p = 10$ en $x = 110^\circ$, bereken die oppervlakte van $\Delta ADC$.

96%

101 rated

Answer

Die oppervlakte van ΔADC\Delta ADC kan bereken word met die area-formule:

AreaΔADC=12(AD)(CD)sin(ADC)Area_{\Delta ADC} = \frac{1}{2}(AD)(CD)sin(\angle ADC)

Weet dat:
AD=3(10)AD = 3(10) en
CD=3(10)(sin(110)+cos(110))2sin(110)CD = \frac{3(10)(sin(110) + cos(110))}{\sqrt{2} sin(110)}

Invoeging van die waardes lei tot:

AreaΔADC=12(30)(3(10)(sin(110)+cos(110))2sin(110))(sin(45))Area_{\Delta ADC} = \frac{1}{2}(30)(\frac{3(10)(sin(110) + cos(110))}{\sqrt{2}sin(110)})(sin(45))

Die finale oppervlak is 143.11m2143.11 m^2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;