Photo AI

In the diagram below, P(-7; 4) is a point in the Cartesian plane - NSC Mathematics - Question 5 - 2022 - Paper 2

Question icon

Question 5

In-the-diagram-below,-P(-7;-4)-is-a-point-in-the-Cartesian-plane-NSC Mathematics-Question 5-2022-Paper 2.png

In the diagram below, P(-7; 4) is a point in the Cartesian plane. R is a point on the positive x-axis such that obtuse POR = θ. Calculate, without using a calculato... show full transcript

Worked Solution & Example Answer:In the diagram below, P(-7; 4) is a point in the Cartesian plane - NSC Mathematics - Question 5 - 2022 - Paper 2

Step 1

Length OP

96%

114 rated

Answer

To find the length OP, we can use the distance formula, which is given as:

OP=(x2x1)2+(y2y1)2OP = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Substituting the coordinates of points P (-7, 4) and O (0, 0):

OP=((7)0)2+(40)2OP = \sqrt{((-7) - 0)^2 + (4 - 0)^2}. This simplifies to: OP=49+16=65OP = \sqrt{49 + 16} = \sqrt{65}. Thus, the length OP is 65\sqrt{65}.

Step 2

Value of (a) tan θ

99%

104 rated

Answer

To find tan θ, we can use the definition of tangent:

tan(θ)=oppositeadjacent\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}

Here, opposite = 4 and adjacent = -7. Therefore:

tan(θ)=47=47\tan(\theta) = \frac{4}{-7} = -\frac{4}{7}.

Step 3

Value of (b) cos(θ - 180°)

96%

101 rated

Answer

Using the cosine reduction formula:

cos(θ180°)=cos(θ)\cos(\theta - 180°) = -\cos(\theta)

From previous calculations, we have:

cos(θ)=765\cos(\theta) = \frac{-7}{\sqrt{65}}

So,

cos(θ180°)=(765)=765\cos(\theta - 180°) = -\left( -\frac{7}{\sqrt{65}} \right) = \frac{7}{\sqrt{65}}.

Step 4

Determine the general solution of: sin x cos x + sin x = 3 cos³ x + 3 cos x

98%

120 rated

Answer

We can rewrite the equation:

sinx(cosx+1)=3cosx(cos2x+1)\sin x (\cos x + 1) = 3 \cos x (\cos^2 x + 1).

Setting both sides to zero, we factor:

  1. For \sin x = 0, ( x = k \cdot 180°, k ∈ Z )

  2. For \cos x = 0, ( x = 90° + k \cdot 180°, k ∈ Z )

Combine solutions from both cases.

Step 5

Given the identity: sin 3x / (1 - cos 3x) = 1 + cos 3x / sin 3x

97%

117 rated

Answer

To prove this identity, start with the left-hand side:

LHS=sin3x1cos3xsin3xsin3x=sin23xsin3x(1cos3x)LHS = \frac{\sin 3x}{1 - \cos 3x} \cdot \frac{\sin 3x}{\sin 3x} = \frac{\sin^2 3x}{\sin 3x (1 - \cos 3x)}.

Now, rewrite the expression using the Pythagorean identity, which leads to:

=1cos23xsin3x(1cos3x)=(1cos3x)(1+cos3x)sin3x(1cos3x)=1+cos3xsin3x=RHS= \frac{1 - \cos^2 3x}{\sin 3x (1 - \cos 3x)} = \frac{(1 - \cos 3x)(1 + \cos 3x)}{\sin 3x (1 - \cos 3x)} = \frac{1 + \cos 3x}{\sin 3x} = RHS.

Step 6

Determine the values of x, in the interval x ∈ [0°; 60°], for which the identity will be undefined.

97%

121 rated

Answer

The identity will be undefined when:

  1. sin3x=03x=k180°x=k60°\sin 3x = 0 \Rightarrow 3x = k \cdot 180° \Rightarrow x = k \cdot 60°

    • Valid solutions: x=0°x = 0°, x=60°x = 60°
  2. 1cos3x=0cos3x=13x=0°+k360°x=0°+k120°1 - \cos 3x = 0 \Rightarrow \cos 3x = 1 \Rightarrow 3x = 0° + k \cdot 360° \Rightarrow x = 0° + k \cdot 120°

    • Valid solution: x=0°x = 0°.

Thus, x=0°x = 0° is the only solution in the interval [0°, 60°] which makes the identity undefined.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;