Die grafieke van
$f(x) = -rac{1}{2} ext{cos} heta$ en $g(x) = ext{sin}(x + 30°)$, vir die interval $x ext{ re } [0°; 180°]$, is hieronder gesket - NSC Mathematics - Question 5 - 2020 - Paper 2
Question 5
Die grafieke van
$f(x) = -rac{1}{2} ext{cos} heta$ en $g(x) = ext{sin}(x + 30°)$, vir die interval $x ext{ re } [0°; 180°]$, is hieronder gesket.
$A(130°... show full transcript
Worked Solution & Example Answer:Die grafieke van
$f(x) = -rac{1}{2} ext{cos} heta$ en $g(x) = ext{sin}(x + 30°)$, vir die interval $x ext{ re } [0°; 180°]$, is hieronder gesket - NSC Mathematics - Question 5 - 2020 - Paper 2
Step 1
5.1 Skryf die periode van g neer.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die periode van die funksie g is 360°.
Step 2
5.2 Skryf die amplitude van f neer.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die amplitude van die funksie f is 21.
Step 3
5.3 Bepaal die waarde van f(180°) - g(180°).
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Bereken f(180°)=−21extcos(180°)=−21(−1)=21
En g(180°)=extsin(180°+30°)=extsin(210°)=−21
Dus, f(180°)−g(180°)=21−(−21)=1.
Step 4
5.4.1 f(x - 10°) = g(x - 10°)
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die snypunt kom voor waar f(x−10°) gelyk is aan g(x−10°), wat na berekeninge x=140° gee.
Step 5
5.4.2 √3 sin x + cos x ≥ 1
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om die ongelykheid \frac{\text{√3} \text{sin} x + \text{cos} x \geq 1 op te los, kan ons begin met die volgende stappe:
Deel dit deur 2: sinx+cosx≥21
Dan kan ons sin(x+30°) gebruik en die interval is 0°≤x≤120°.