Photo AI

Die grafieke van $f(x) = - rac{1}{2} ext{cos} heta$ en $g(x) = ext{sin}(x + 30°)$, vir die interval $x ext{ re } [0°; 180°]$, is hieronder gesket - NSC Mathematics - Question 5 - 2020 - Paper 2

Question icon

Question 5

Die-grafieke-van---$f(x)-=---rac{1}{2}--ext{cos}--heta$--en--$g(x)-=--ext{sin}(x-+-30°)$,-vir-die-interval--$x--ext{-re-}-[0°;-180°]$,-is-hieronder-gesket-NSC Mathematics-Question 5-2020-Paper 2.png

Die grafieke van $f(x) = - rac{1}{2} ext{cos} heta$ en $g(x) = ext{sin}(x + 30°)$, vir die interval $x ext{ re } [0°; 180°]$, is hieronder gesket. $A(130°... show full transcript

Worked Solution & Example Answer:Die grafieke van $f(x) = - rac{1}{2} ext{cos} heta$ en $g(x) = ext{sin}(x + 30°)$, vir die interval $x ext{ re } [0°; 180°]$, is hieronder gesket - NSC Mathematics - Question 5 - 2020 - Paper 2

Step 1

5.1 Skryf die periode van g neer.

96%

114 rated

Answer

Die periode van die funksie gg is 360°360°.

Step 2

5.2 Skryf die amplitude van f neer.

99%

104 rated

Answer

Die amplitude van die funksie ff is 12\frac{1}{2}.

Step 3

5.3 Bepaal die waarde van f(180°) - g(180°).

96%

101 rated

Answer

Bereken f(180°)=12extcos(180°)=12(1)=12f(180°) = -\frac{1}{2} ext{cos}(180°) = -\frac{1}{2} (-1) = \frac{1}{2}
En
g(180°)=extsin(180°+30°)=extsin(210°)=12g(180°) = ext{sin}(180° + 30°) = ext{sin}(210°) = -\frac{1}{2}
Dus, f(180°)g(180°)=12(12)=1f(180°) - g(180°) = \frac{1}{2} - (-\frac{1}{2}) = 1.

Step 4

5.4.1 f(x - 10°) = g(x - 10°)

98%

120 rated

Answer

Die snypunt kom voor waar f(x10°)f(x - 10°) gelyk is aan g(x10°)g(x - 10°), wat na berekeninge x=140°x = 140° gee.

Step 5

5.4.2 √3 sin x + cos x ≥ 1

97%

117 rated

Answer

Om die ongelykheid \frac{\text{√3} \text{sin} x + \text{cos} x \geq 1 op te los, kan ons begin met die volgende stappe:
Deel dit deur 2:
sinx+cosx12\text{sin} x + \text{cos} x \geq \frac{1}{2}
Dan kan ons sin(x+30°)\text{sin}(x + 30°) gebruik en die interval is 0°x120°0° \leq x \leq 120°.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;