Photo AI

In the diagram below, the graphs of $f(x) = ext{cos} 2x$ and $g(x) = - ext{sin} x$ are drawn for the interval $x orall [-180^{ ext{o}} ; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2021 - Paper 2

Question icon

Question 6

In-the-diagram-below,-the-graphs-of-$f(x)-=--ext{cos}-2x$-and-$g(x)-=---ext{sin}-x$-are-drawn-for-the-interval-$x--orall-[-180^{-ext{o}}-;-180^{-ext{o}}]$-NSC Mathematics-Question 6-2021-Paper 2.png

In the diagram below, the graphs of $f(x) = ext{cos} 2x$ and $g(x) = - ext{sin} x$ are drawn for the interval $x orall [-180^{ ext{o}} ; 180^{ ext{o}}]$. A and B a... show full transcript

Worked Solution & Example Answer:In the diagram below, the graphs of $f(x) = ext{cos} 2x$ and $g(x) = - ext{sin} x$ are drawn for the interval $x orall [-180^{ ext{o}} ; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2021 - Paper 2

Step 1

Without using a calculator, determine the values of $x$ for which $ ext{cos} 2x = - ext{sin} x$ in the interval $x orall [-180^{ ext{o}} ; 180^{ ext{o}}]$.

96%

114 rated

Answer

To solve the equation extcos2x+extsinx=0 ext{cos} 2x + ext{sin} x = 0, we can rewrite it using the identity:

1=2extsin2x+extsinx1 = 2 ext{sin}^2 x + ext{sin} x

This leads to the quadratic equation:

2extsin2x+extsinx1=02 ext{sin}^2 x + ext{sin} x - 1 = 0

Using the quadratic formula:

extsinx=b±b24ac2a ext{sin} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting a=2a = 2, b=1b = 1, and c=1c = -1 gives us:

extsinx=1±1+84=1±34 ext{sin} x = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm 3}{4}

Thus, extsinx=12 ext{sin} x = \frac{1}{2} or extsinx=1 ext{sin} x = -1. Values for extsinx=12 ext{sin} x = \frac{1}{2} in the given interval are:

x=30exto+360extokx = 30^{ ext{o}} + 360^{ ext{o}}k x=150exto+360extokx = 150^{ ext{o}} + 360^{ ext{o}}k

For extsinx=1 ext{sin} x = -1:

x=90exto+360extokx = -90^{ ext{o}} + 360^{ ext{o}}k

Thus, the values of xx are x=150exto,30exto,90extox = 150^{ ext{o}}, 30^{ ext{o}}, -90^{ ext{o}} and similar solutions derived from periodicity in the given domain.

Step 2

6.2.1 How many degrees apart are points A and B from each other?

99%

104 rated

Answer

To determine the distance between points A and B, we note the angles where the functions intersect. Using the previously calculated angle values, we find:

AB=150exto(30exto)=180extoAB = 150^{ ext{o}} - (-30^{ ext{o}}) = 180^{ ext{o}}

Therefore, points A and B are 180 degrees apart.

Step 3

6.2.2 For which values of $x$ in the given interval will $f^{ ext{'}}(x) > 0$?

96%

101 rated

Answer

The derivative of f(x)=extcos2xf(x) = ext{cos} 2x is:

fext(x)=2extsin2xf^{ ext{'}}(x) = -2 ext{sin} 2x

To find when this is greater than zero, we look for values of xx such that:

2extsin2x>0extsin2x<0-2 ext{sin} 2x > 0 \Rightarrow ext{sin} 2x < 0

The intervals where extsin2x<0 ext{sin} 2x < 0 occur in Quadrants 3 and 4. Therefore, we can identify the appropriate ranges within the domain to find:

xextin(90exto,180exto)extand(180exto,90exto)x ext{ in } (90^{ ext{o}}, 180^{ ext{o}}) ext{ and } (-180^{ ext{o}}, -90^{ ext{o}})

Step 4

6.2.3 Determine the values of $k$ for which $ ext{cos} 2x + 3 = k$ will have no solution.

98%

120 rated

Answer

Considering the range of extcos2x ext{cos} 2x, which oscillates between -1 and 1, we modify the equation:

extcos2x+3=kk=extcos2x+3 ext{cos} 2x + 3 = k \Rightarrow k = ext{cos} 2x + 3

Thus, the values of kk for which there will be no solution occurs when:

k<2extork>4k < 2 ext{ or } k > 4

This means for any kk less than 2 or greater than 4, extcos2x+3=k ext{cos} 2x + 3 = k will yield no valid solutions.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;