Photo AI

Given: $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ 6.1.1 Use the given identity to derive a formula for $\cos(\alpha + \beta)$ - NSC Mathematics - Question 6 - 2021 - Paper 2

Question icon

Question 6

Given:-$\cos(\alpha---\beta)-=-\cos-\alpha-\cos-\beta-+-\sin-\alpha-\sin-\beta$----6.1.1-Use-the-given-identity-to-derive-a-formula-for-$\cos(\alpha-+-\beta)$-NSC Mathematics-Question 6-2021-Paper 2.png

Given: $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ 6.1.1 Use the given identity to derive a formula for $\cos(\alpha + \beta)$. 6.1.... show full transcript

Worked Solution & Example Answer:Given: $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ 6.1.1 Use the given identity to derive a formula for $\cos(\alpha + \beta)$ - NSC Mathematics - Question 6 - 2021 - Paper 2

Step 1

Use the given identity to derive a formula for $\cos(\alpha + \beta)$.

96%

114 rated

Answer

To derive a formula for cos(α+β)\cos(\alpha + \beta), we can utilize the identity given for cos(αβ)\cos(\alpha - \beta):

cos(α+β)=cos(α(β))=cosαcos(β)+sinαsin(β)\cos(\alpha + \beta) = \cos(\alpha - (-\beta)) = \cos \alpha \cos (-\beta) + \sin \alpha \sin (-\beta)

Since cos(β)=cosβ\cos(-\beta) = \cos\beta and sin(β)=sinβ\sin(-\beta) = -\sin\beta, we rewrite this as:

cos(α+β)=cosαcosβsinαsinβ\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta

Thus, the derived formula for cos(α+β)\cos(\alpha + \beta) is:

cos(α+β)=cosαcosβsinαsinβ\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta

Step 2

Simplify completely: $2\cos 6x \cos 4x - \cos 10x + 2\sin^2 x$.

99%

104 rated

Answer

To simplify the expression 2cos6xcos4xcos10x+2sin2x2\cos 6x \cos 4x - \cos 10x + 2\sin^2 x, we start by applying the product-to-sum identities:

  1. For 2cosAcosB2\cos A \cos B, the identity is:
    2cosAcosB=cos(A+B)+cos(AB)2\cos A \cos B = \cos(A+B) + \cos(A-B)
    Therefore,
    2cos6xcos4x=cos(10x)+cos(2x)2\cos 6x \cos 4x = \cos(10x) + \cos(2x)

  2. Substitute that into the original expression:
    cos(10x)+cos(2x)cos(10x)+2sin2x\cos(10x) + \cos(2x) - \cos(10x) + 2\sin^2 x

  3. The cos(10x)\cos(10x) terms cancel:
    cos(2x)+2sin2x\cos(2x) + 2\sin^2 x

  4. Recall that sin2x=1cos2x\sin^2 x = 1 - \cos^2 x, we can use the Pythagorean identity:
    Thus,
    cos(2x)+2(1cos2x)=cos(2x)+22cos2x\cos(2x) + 2(1 - \cos^2 x) = \cos(2x) + 2 - 2\cos^2 x

Therefore, the final simplified expression is:

cos(2x)+22cos2x\cos(2x) + 2 - 2\cos^2 x

Step 3

Determine the general solution of $\tan x = 2\sin 2x$ where $\cos x < 0$.

96%

101 rated

Answer

To solve the equation tanx=2sin2x\tan x = 2\sin 2x, we start by expressing sin2x\sin 2x in terms of tanx\tan x:

  1. Use the identity sin2x=2sinxcosx\sin 2x = 2\sin x \cos x:
    Therefore,
    tanx=4sinxcosx\tan x = 4\sin x \cos x

  2. Replace tanx\tan x with sinxcosx\frac{\sin x}{\cos x}:
    sinxcosx=4sinxcosx\frac{\sin x}{\cos x} = 4 \sin x \cos x
    Cross-multiplying gives:
    sinx=4sinxcos2x\sin x = 4\sin x \cos^2 x

  3. Factor out sinx\sin x:
    sinx(14cos2x)=0\sin x (1 - 4\cos^2 x) = 0
    This leads to two equations:

    • sinx=0\sin x = 0
    • 14cos2x=01 - 4\cos^2 x = 0, thus cos2x=14\cos^2 x = \frac{1}{4}, hence cosx=±12\cos x = \pm \frac{1}{2}.
  4. For sinx=0\sin x = 0, we have: x=kπ,kZx = k\pi, \quad k \in \mathbb{Z}
    For cosx=12\cos x = -\frac{1}{2}, we have: x=120+k360orx=240+k360,kZx = 120^{\circ} + k \cdot 360^{\circ} \quad \text{or} \quad x = 240^{\circ} + k \cdot 360^{\circ}, \quad k \in \mathbb{Z}
    But we need to ensure cosx<0\cos x < 0 which applies here.

Thus, the general solutions are: x=kπextandx=120+k360extorx=240+k360,kZx = k\pi ext{ and } x = 120^{\circ} + k\cdot 360^{\circ} ext{ or } x = 240^{\circ} + k\cdot 360^{\circ}, \quad k \in \mathbb{Z}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;