Photo AI

In the diagram, the graphs of $f(x) = 2 ext{sin}2x$ and $g(x) = - ext{cos}(x + 45^ ext{o})$ are drawn for the interval $x ext{ in } [0^ ext{o} ; 180^ ext{o}]$ - NSC Mathematics - Question 6 - 2023 - Paper 2

Question icon

Question 6

In-the-diagram,-the-graphs-of-$f(x)-=-2-ext{sin}2x$-and-$g(x)-=---ext{cos}(x-+-45^-ext{o})$-are-drawn-for-the-interval-$x--ext{-in-}-[0^-ext{o}-;-180^-ext{o}]$-NSC Mathematics-Question 6-2023-Paper 2.png

In the diagram, the graphs of $f(x) = 2 ext{sin}2x$ and $g(x) = - ext{cos}(x + 45^ ext{o})$ are drawn for the interval $x ext{ in } [0^ ext{o} ; 180^ ext{o}]$. $A(1... show full transcript

Worked Solution & Example Answer:In the diagram, the graphs of $f(x) = 2 ext{sin}2x$ and $g(x) = - ext{cos}(x + 45^ ext{o})$ are drawn for the interval $x ext{ in } [0^ ext{o} ; 180^ ext{o}]$ - NSC Mathematics - Question 6 - 2023 - Paper 2

Step 1

Write down the period of $f$

96%

114 rated

Answer

The period of the function f(x)=2extsin2xf(x) = 2 ext{sin}2x can be calculated using the formula for the period of a sine function, which is given by:

ext{Period} = rac{360^ ext{o}}{n}

where nn is the coefficient of xx inside the sine function. Here, n=2n = 2, thus the period is:

ext{Period} = rac{360^ ext{o}}{2} = 180^ ext{o}

Step 2

Determine the range of $g$ in the interval $x \in [0^ ext{o} ; 180^ ext{o}]$

99%

104 rated

Answer

The function g(x)=extcos(x+45exto)g(x) = - ext{cos}(x + 45^ ext{o}) achieves its maximum when extcos(x+45exto) ext{cos}(x + 45^ ext{o}) is minimized, and its minimum when extcos(x+45exto) ext{cos}(x + 45^ ext{o}) is maximized. The range of extcos ext{cos} is [1,1][-1, 1], thus,

  • The maximum value of gg is 0.
  • The minimum value of gg is -1.

Therefore, the range of gg is:

g(x)extin[1,0]g(x) ext{ in } [-1, 0]

Step 3

Determine the values of $x$, in the interval $x \in [0^ ext{o} ; 180^ ext{o}]$, for which: $f(x) \times g(x) > 0$

96%

101 rated

Answer

To solve f(x)imesg(x)>0f(x) imes g(x) > 0, we need to analyze the signs of both functions in the specified interval. Since both functions will be positive or both negative for the product to be positive:

  1. For f(x)>0f(x) > 0, we find:

    • From f(x)=2extsin2x>0f(x) = 2 ext{sin}2x > 0, we have:
    • 2x2x must be in the first or second quadrant. Thus:
    • This occurs when 0<2x<180exto0 < 2x < 180^ ext{o} or 360exto<2x<540exto360^ ext{o} < 2x < 540^ ext{o}.
    • Therefore, this simplifies to:
    • 0<x<90exto0 < x < 90^ ext{o}.
  2. For g(x)>0g(x) > 0, we analyze:

    • g(x)=extcos(x+45exto)>0g(x) = - ext{cos}(x + 45^ ext{o}) > 0 or extcos(x+45exto)<0 ext{cos}(x + 45^ ext{o}) < 0. This implies that:
    • x+45extox + 45^ ext{o} is in the second quadrant. Thus, 90exto<x+45exto<180exto90^ ext{o} < x + 45^ ext{o} < 180^ ext{o}, yielding:
    • 45exto<x<135exto45^ ext{o} < x < 135^ ext{o}.

Combining intervals, the solution for f(x)imesg(x)>0f(x) imes g(x) > 0 is:

xextin(45exto,90exto)extor(105exto,135exto)x ext{ in } (45^ ext{o}, 90^ ext{o}) ext{ or } (105^ ext{o}, 135^ ext{o})

Step 4

Determine the values of $x$, in the interval $x \in [0^ ext{o} ; 180^ ext{o}]$, for which: $f(x) + 1 \leq 0$

98%

120 rated

Answer

To solve f(x)+1extextextextextextextextextextextextextextextextextextextextextextextextextextextextextextext=0f(x) + 1 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } = 0, we rearrange:

f(x)extext+1extextextext=0extextextext=2extsin2x+1ext=0f(x) ext{ } ext{ } + 1 ext{ } ext{ } ext{ } ext{ } = 0 ext{ } ext{ } ext{ } ext{ } = 2 ext{sin}2x + 1 ext{ } = 0

Thus, we have:

2extsin2x=12 ext{sin}2x = -1

This simplifies to:

ext{sin}2x = - rac{1}{2}

The general solution is:

2x=210exto+360extokextand2x=330exto+360extokextforintegersk2x = 210^ ext{o} + 360^ ext{o}k ext{ and } 2x = 330^ ext{o} + 360^ ext{o}k ext{ for integers } k

From this we get:

x=105exto+180extokextandx=165exto+180extokx = 105^ ext{o} + 180^ ext{o}k ext{ and } x = 165^ ext{o} + 180^ ext{o}k

Within the interval [0exto,180exto][0^ ext{o}, 180^ ext{o}]:

  • For k=0,x=105extok=0, x=105^ ext{o} and x=165extox=165^ ext{o}.

Therefore:

xextin[105exto,165exto]x ext{ in } [105^ ext{o}, 165^ ext{o}]

Step 5

Determine the value(s) of $k$ in the interval $x \in [0^ ext{o}; 180^ ext{o}]$

97%

117 rated

Answer

Since p(x)=f(x)p(x) = -f(x) and D(k,1)D(k, -1) lies on pp, we set f(k)=1-f(k) = -1. Thus we have:

2extsin2k=1-2 ext{sin}2k = -1

This simplifies to:

ext{sin}2k = rac{1}{2}

The general solutions for this equation are:

2k=30exto+360extokextor2k=150exto+360extok2k = 30^ ext{o} + 360^ ext{o}k ext{ or } 2k = 150^ ext{o} + 360^ ext{o}k

This gives us:

  • k=15exto+180extonk = 15^ ext{o} + 180^ ext{o}n
  • k=75exto+180extonk = 75^ ext{o} + 180^ ext{o}n

For integer values of nn and considering the interval [0exto,180exto][0^ ext{o}, 180^ ext{o}], we find:

  • For n=0n=0, k=15extok = 15^ ext{o} and k=75extok = 75^ ext{o}.

Hence the required value(s) are:

kextin[15exto,75exto]k ext{ in } [15^ ext{o}, 75^ ext{o}]

Step 6

Determine the equation of $h$

97%

121 rated

Answer

To determine the equation of hh, we start with the original function for g(x)g(x):

g(x)=extcos(x+45exto)g(x) = - ext{cos}(x + 45^ ext{o})

When gg is translated 45exto45^ ext{o} to the left, the transformation can be expressed as:

h(x)=g(x+45exto)h(x) = g(x + 45^ ext{o})

Thus,

h(x)=extcos((x+45exto)+45exto)h(x) = - ext{cos}((x + 45^ ext{o}) + 45^ ext{o})

Simplifying this gives:

h(x)=extcos(x+90exto)h(x) = - ext{cos}(x + 90^ ext{o})

Using the trigonometric identity, we find:

h(x)=extsinxh(x) = ext{sin}x

Therefore, the equation of hh in its simplest form is:

h(x)=extsinxh(x) = ext{sin} x

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;