Photo AI

5.1 Simplify the following expression to ONE trigonometric term: $$\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^\circ + x) \cdot \cos(90^\circ - x)}{\cos x \cdot \tan x}$$ 5.2 Without using a calculator, determine the value of: $$\frac{\sin 2^\circ 35^\circ - \cos 2^\circ 35^\circ}{4 \sin 10^\circ \cos 10^\circ}$$ 5.3 Given: $\cos 26^\circ = m$ Without using a calculator, determine $2 \sin 77^\circ$ in terms of $m$ - NSC Mathematics - Question 5 - 2019 - Paper 2

Question icon

Question 5

5.1-Simplify-the-following-expression-to-ONE-trigonometric-term:--$$\frac{\sin-x}{\cos-x-\cdot-\tan-x}-+-\frac{\sin(180^\circ-+-x)-\cdot-\cos(90^\circ---x)}{\cos-x-\cdot-\tan-x}$$--5.2-Without-using-a-calculator,-determine-the-value-of:--$$\frac{\sin-2^\circ-35^\circ---\cos-2^\circ-35^\circ}{4-\sin-10^\circ-\cos-10^\circ}$$--5.3-Given:-$\cos-26^\circ-=-m$--Without-using-a-calculator,-determine-$2-\sin-77^\circ$-in-terms-of-$m$-NSC Mathematics-Question 5-2019-Paper 2.png

5.1 Simplify the following expression to ONE trigonometric term: $$\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^\circ + x) \cdot \cos(90^\circ - x)}{\cos x \... show full transcript

Worked Solution & Example Answer:5.1 Simplify the following expression to ONE trigonometric term: $$\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^\circ + x) \cdot \cos(90^\circ - x)}{\cos x \cdot \tan x}$$ 5.2 Without using a calculator, determine the value of: $$\frac{\sin 2^\circ 35^\circ - \cos 2^\circ 35^\circ}{4 \sin 10^\circ \cos 10^\circ}$$ 5.3 Given: $\cos 26^\circ = m$ Without using a calculator, determine $2 \sin 77^\circ$ in terms of $m$ - NSC Mathematics - Question 5 - 2019 - Paper 2

Step 1

Simplify the following expression to ONE trigonometric term:

96%

114 rated

Answer

To simplify the expression, we start with:

sinxcosxtanx+sin(180+x)cos(90x)cosxtanx\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^\circ + x) \cdot \cos(90^\circ - x)}{\cos x \cdot \tan x}

First, rewrite the terms: we know that sin(180+x)=sinx\sin(180^\circ + x) = -\sin x and cos(90x)=sinx\cos(90^\circ - x) = \sin x. Substitute these identities into the expression:

sinxcosxtanxsinxsinxcosxtanx\frac{\sin x}{\cos x \cdot \tan x} - \frac{\sin x \cdot \sin x}{\cos x \cdot \tan x}

Combine the fractions:

=sinx(1sinx)cosxtanx= \frac{\sin x (1 - \sin x)}{\cos x \cdot \tan x}

Since tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}, we have:

=sinx(1sinx)cos2x= \frac{\sin x (1 - \sin x)}{\cos^2 x}

Thus, the expression simplifies to:

1sinxcos2x\frac{1 - \sin x}{\cos^2 x}

Step 2

Without using a calculator, determine the value of:

99%

104 rated

Answer

We want to evaluate:

sin235cos2354sin10cos10\frac{\sin 2^\circ 35^\circ - \cos 2^\circ 35^\circ}{4 \sin 10^\circ \cos 10^\circ}

Using angle identities, we can express this as:

=(cos2351)cos20= \frac{- (\cos 2^\circ 35^\circ - 1)}{\cos 20^\circ}

With further simplification:

=cos235+1cos20=2sin220cos20=2sin20= \frac{- \cos 2^\circ 35^\circ + 1}{\cos 20^\circ} = \frac{2 \sin^2 20^\circ}{\cos 20^\circ} = 2 \sin 20^\circ

Step 3

Given: cos26° = m Without using a calculator, determine 2 sin 77° in terms of m.

96%

101 rated

Answer

To find 2sin772 \sin 77^\circ, we use the identity:

sin(90x)=cosx\sin(90^\circ - x) = \cos x

Thus, we have:

2sin77=2cos132 \sin 77^\circ = 2 \cos 13^\circ

Next, we express cos13\cos 13^\circ in terms of mm. Since:

cos26=m\cos 26^\circ = m

We can derive:

cos13=1sin213\cos 13^\circ = \sqrt{1 - \sin^2 13^\circ}

Hence, we conclude:

2sin77=21(1m2)=2m2 \sin 77^\circ = 2 \sqrt{1 - (1 - m^2)} = 2m

Step 4

Determine the general solution of f(x) = tan 165°.

98%

120 rated

Answer

For the function:

f(x)=sin(x+25)cos(sin(25)cos(x+25)sin15)f(x) = \sin(x + 25^\circ)\cos(\sin(25^\circ) - \cos(x + 25^\circ)\sin 15^\circ)

We can set:

sin(x+100)=tan165\sin(x + 100^\circ) = \tan 165^\circ

Now, using the general solution for sine:

x+100=195.54+k360orx+100=344.46+k360x + 100^\circ = 195.54^\circ + k\cdot 360^\circ\, or \quad x + 100^\circ = 344.46^\circ + k\cdot 360^\circ

Solving these leads to:

x=195.54100+k360orx=344.46100+k360x = 195.54^\circ - 100^\circ + k\cdot 360^\circ\, or\, x = 344.46^\circ - 100^\circ + k\cdot 360^\circ

Step 5

Determine the value(s) of x in the interval x = [0°;360°] for which f(x) will have a minimum value.

97%

117 rated

Answer

The minimum occurs when:

f(x)=sin(x+100)f(x) = \sin(x + 100^\circ)

From the previous calculations, we know that:

x+100=270orx+100=260x + 100^\circ = 270^\circ\, or \quad x + 100^\circ = 260^\circ

Thus solving gives:

x=170orx=160x = 170^\circ\, or \quad x = 160^\circ

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;