To simplify the expression, we start with:
cosx⋅tanxsinx+cosx⋅tanxsin(180∘+x)⋅cos(90∘−x)
First, rewrite the terms: we know that sin(180∘+x)=−sinx and cos(90∘−x)=sinx. Substitute these identities into the expression:
cosx⋅tanxsinx−cosx⋅tanxsinx⋅sinx
Combine the fractions:
=cosx⋅tanxsinx(1−sinx)
Since tanx=cosxsinx, we have:
=cos2xsinx(1−sinx)
Thus, the expression simplifies to:
cos2x1−sinx