Photo AI

In die diagram is A, B en C punte in dieselfde horizontale vlak - NSC Mathematics - Question 7 - 2023 - Paper 2

Question icon

Question 7

In-die-diagram-is-A,-B-en-C-punte-in-dieselfde-horizontale-vlak-NSC Mathematics-Question 7-2023-Paper 2.png

In die diagram is A, B en C punte in dieselfde horizontale vlak. D is 'n punt direk bo C, dit is DC ⊥ AC en DC ⊥ BC. Daar word gegee dat ∠ACB=100°, ∠CAD=30°, AD = 20... show full transcript

Worked Solution & Example Answer:In die diagram is A, B en C punte in dieselfde horizontale vlak - NSC Mathematics - Question 7 - 2023 - Paper 2

Step 1

7.1.1 AC

96%

114 rated

Answer

To find the length of AC, we can use the cosine rule in triangle ACD:

AC=20cos(30°)AC = 20 \cdot \cos(30°)

Calculating this gives:

AC=20cos(30°)=2032=10317.32 unitsAC = 20 \cdot \cos(30°) = 20 \cdot \frac{\sqrt{3}}{2} = 10\sqrt{3} \approx 17.32 \text{ units}

Step 2

7.1.2 AB

99%

104 rated

Answer

To calculate AB, we use the cosine rule again in triangle ACB:

AB2=AC2+BC22ACBCcos(100°)AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos(100°)

Substituting in the values we found and known:

AB2=(103)2+822(103)8cos(100°)AB^2 = (10\sqrt{3})^2 + 8^2 - 2 \cdot (10\sqrt{3}) \cdot 8 \cdot \cos(100°)

Calculating this gives:

AB2=300+6421038(0.1736)AB^2 = 300 + 64 - 2 \cdot 10\sqrt{3} \cdot 8 \cdot (-0.1736)

After evaluating, we find:

AB20.30 unitsAB \approx 20.30 \text{ units}

Step 3

7.2 Indien daar verder gegee word dat ∠ADB = 73,4°, bereken die grootte van ∠ADB.

96%

101 rated

Answer

To find the angle ADB, we can use the sine rule in triangle ADB:

sin(ADB)AB=sin(73.4°)AD\frac{\sin(ADB)}{AB} = \frac{\sin(73.4°)}{AD}

Substituting in the known values:

sin(ADB)20.30=sin(73.4°)20\frac{\sin(ADB)}{20.30} = \frac{\sin(73.4°)}{20}

Solving this gives:

sin(ADB)=20.30sin(73.4°)20\sin(ADB) = \frac{20.30 \cdot \sin(73.4°)}{20}

Calculating this value, we find:

ADB76.58°ADB \approx 76.58°

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;