Photo AI

5.1 Without using a calculator, simplify the following expression to ONE trigonometric ratio: sin 140° · sin(360° - x) cos 50° · tan(-x) 5.2 Prove the identity: -2sin²x + cos x + 1 1 - cos(540° - x) = 2 cos x - 1 5.3 Given: sin 36° = √(1 - p²) Without using a calculator, determine EACH of the following in terms of p: 5.3.1 tan 36° 5.3.2 cos 108° - NSC Mathematics - Question 5 - 2021 - Paper 2

Question icon

Question 5

5.1-Without-using-a-calculator,-simplify-the-following-expression-to-ONE-trigonometric-ratio:--sin-140°-·-sin(360°---x)-cos-50°-·-tan(-x)--5.2-Prove-the-identity:---2sin²x-+-cos-x-+-1-1---cos(540°---x)-=-2-cos-x---1--5.3-Given:-sin-36°-=-√(1---p²)--Without-using-a-calculator,-determine-EACH-of-the-following-in-terms-of-p:--5.3.1-tan-36°--5.3.2-cos-108°-NSC Mathematics-Question 5-2021-Paper 2.png

5.1 Without using a calculator, simplify the following expression to ONE trigonometric ratio: sin 140° · sin(360° - x) cos 50° · tan(-x) 5.2 Prove the identity: -... show full transcript

Worked Solution & Example Answer:5.1 Without using a calculator, simplify the following expression to ONE trigonometric ratio: sin 140° · sin(360° - x) cos 50° · tan(-x) 5.2 Prove the identity: -2sin²x + cos x + 1 1 - cos(540° - x) = 2 cos x - 1 5.3 Given: sin 36° = √(1 - p²) Without using a calculator, determine EACH of the following in terms of p: 5.3.1 tan 36° 5.3.2 cos 108° - NSC Mathematics - Question 5 - 2021 - Paper 2

Step 1

5.1 Without using a calculator, simplify the following expression to ONE trigonometric ratio:

96%

114 rated

Answer

To simplify the expression, start with:

extsin140°imesextsin(360°x)=extsin140°imesextsinx ext{sin } 140° imes ext{sin }(360° - x) = ext{sin } 140° imes ext{sin } x

Then, noting that: extsin140°=extsin(180°40°)=extsin40° ext{sin } 140° = ext{sin }(180° - 40°) = ext{sin } 40°

We rewrite:

extsinximesextsin40° ext{sin } x imes ext{sin } 40°

Next, use the formula for sin product:

ext{sin } A imes ext{sin } B = rac{1}{2} [ ext{cos}(A - B) - ext{cos}(A + B)]

Plugging in values,

ext{sin } x imes ext{sin } 40° = rac{1}{2} [ ext{cos}(x - 40°) - ext{cos}(x + 40°)]

This results in:

ext{Result: } rac{ ext{sin }(40°) imes ext{sin }(180° - x)}{ ext{cos } 50° imes an(-x)}

Thus, the simplified single trigonometric ratio is:

extAnswer:extsin40° ext{Answer: } ext{sin } 40°

Step 2

5.2 Prove the identity:

99%

104 rated

Answer

To prove the identity:

2extsin2x+extcosx+1=2extcosx1-2 ext{sin}^2x + ext{cos}x + 1 = 2 ext{cos}x - 1

Start with the left-hand side (LHS):

extLHS=2extsin2x+extcosx+1 ext{LHS} = -2 ext{sin}^2x + ext{cos}x + 1

Substituting extsin2x=1extcos2x ext{sin}^2x = 1 - ext{cos}^2x into the LHS:

extLHS=2(1extcos2x)+extcosx+1 ext{LHS} = -2(1 - ext{cos}^2x) + ext{cos}x + 1

This simplifies to:

=2+2extcos2x+extcosx+1= -2 + 2 ext{cos}^2x + ext{cos}x + 1

Combining like terms leads to:

=2extcos2x+extcosx1= 2 ext{cos}^2x + ext{cos}x - 1

Now, setting the LHS equal to the right-hand side (RHS):

The RHS is given as:

extRHS=2extcosx1 ext{RHS} = 2 ext{cos}x - 1

Thus, both sides equal:

2extcos2x+extcosx1=2extcosx12 ext{cos}^2x + ext{cos}x - 1 = 2 ext{cos}x - 1

Therefore, the identity holds:

extLHS=extRHS ext{LHS} = ext{RHS}

Conclusion:

extIdentityproved! ext{Identity proved!}

Step 3

5.3.1 tan 36°

96%

101 rated

Answer

Given:

ext{sin } 36° = rac{ ext{sqrt}(1-p^2)}{p}

Using the identity for tangent:

ext{tan } x = rac{ ext{sin } x}{ ext{cos } x

With the right triangle, place:

extcos36°=extsqrt(1extsin236°)=extsqrt(1(1p2))=p ext{cos } 36° = ext{sqrt}(1 - ext{sin}^2 36°) = ext{sqrt}(1 - (1 - p^2)) = p

Thus,

ext{tan } 36° = rac{ ext{sin } 36°}{ ext{cos } 36°} = rac{ rac{ ext{sqrt}(1 - p^2)}{p}}{p} = rac{ ext{sqrt}(1-p^2)}{p^2}

Hence,

ext{Answer: } an 36° = rac{ ext{sqrt}(1-p^2)}{p^2}

Step 4

5.3.2 cos 108°

98%

120 rated

Answer

To find cos 108°, use:

extcos108°=extcos(90°+18°)=extsin18° ext{cos } 108° = ext{cos }(90° + 18°) = - ext{sin } 18°

Using angle relationships:

extcos108°=extcos(180°72°)=extcos72° ext{cos } 108° = ext{cos }(180° - 72°) = - ext{cos } 72°

Thus,

To express it in terms of p:

extcos72°=extsin18°=extsin(90°72°)=p ext{cos } 72° = ext{sin } 18° = ext{sin }(90° - 72°) = p

Therefore,

extcos108°=p ext{cos } 108° = -p

Finally,

extAnswer:extcos108°=p ext{Answer: } ext{cos } 108° = -p

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;