6.1 Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term:
\[ \frac{\sin 10^{\circ} + \tan(360^{\circ} - \theta) \cdot \sin 20^{\circ}}{\cos 440^{\circ}} \]
6.2 Gegee: \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \)
6.2.1 Bereken die waarde van \( k \) as \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \) - NSC Mathematics - Question 6 - 2022 - Paper 2
Question 6
6.1 Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term:
\[ \frac{\sin 10^{\circ} + \tan(360^{\circ} -... show full transcript
Worked Solution & Example Answer:6.1 Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term:
\[ \frac{\sin 10^{\circ} + \tan(360^{\circ} - \theta) \cdot \sin 20^{\circ}}{\cos 440^{\circ}} \]
6.2 Gegee: \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \)
6.2.1 Bereken die waarde van \( k \) as \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \) - NSC Mathematics - Question 6 - 2022 - Paper 2
Step 1
Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term:
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, we simplify the expression:
cos440∘sin10∘+tan(360∘−θ)⋅sin20∘
Using identities:
Since ( \cos 440^{\circ} = \cos(440^{\circ} - 360^{\circ}) = \cos 80^{\circ} ), we have:
cos80∘sin10∘+tan(360∘−θ)⋅sin20∘
Now, using the identity ( \tan(360^{\circ} - \theta) = -\tan\theta ), this results in:
cos80∘sin10∘−tanθ⋅sin20∘
Then, we apply the double angle identity:
tan(2A)=1−tan2A2tanA
Hence, it simplifies to:
1−2sin2θ
Thus, we find that the final simplified term is:
cos2θ
Step 2
Bereken die waarde van k as \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \).
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve for ( k ), we first apply the sine sum and difference identities:
sinA+sinB=2sin(2A+B)cos(2A−B)
This leads us to:
sin(60∘+2x)+sin(60∘−2x)=2sin(60∘)cos(2x)
Substituting into our equation gives:
2sin(60∘)cos(2x)=kcos2x
Dividing both sides by ( \cos 2x ) (assuming ( \cos 2x \neq 0 )), we get:
k=2sin(60∘)
Calculating values, since ( \sin(60^{\circ}) = \frac{\sqrt{3}}{2} ):
k=3
Step 3
As \( \cos x = \sqrt{t} \), bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van \( \tan 60^{\circ}[\sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x)] \) in terme van \( t \).
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the previously obtained result for ( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) ):