Photo AI

6.1 Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term: \[ \frac{\sin 10^{\circ} + \tan(360^{\circ} - \theta) \cdot \sin 20^{\circ}}{\cos 440^{\circ}} \] 6.2 Gegee: \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \) 6.2.1 Bereken die waarde van \( k \) as \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \) - NSC Mathematics - Question 6 - 2022 - Paper 2

Question icon

Question 6

6.1--Vereenvoudig,-sonder-die-gebruik-van-'n-sakrekenaar,-die-volgende-uitdrukking-tot-'n-enkele-trigonometriese-term:--\[-\frac{\sin-10^{\circ}-+-\tan(360^{\circ}---\theta)-\cdot-\sin-20^{\circ}}{\cos-440^{\circ}}-\]--6.2--Gegee:-\(-\sin(60^{\circ}-+-2x)-+-\sin(60^{\circ}---2x)-=-k-\cos-2x-\)--6.2.1--Bereken-die-waarde-van-\(-k-\)-as-\(-\sin(60^{\circ}-+-2x)-+-\sin(60^{\circ}---2x)-=-k-\cos-2x-\)-NSC Mathematics-Question 6-2022-Paper 2.png

6.1 Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term: \[ \frac{\sin 10^{\circ} + \tan(360^{\circ} -... show full transcript

Worked Solution & Example Answer:6.1 Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term: \[ \frac{\sin 10^{\circ} + \tan(360^{\circ} - \theta) \cdot \sin 20^{\circ}}{\cos 440^{\circ}} \] 6.2 Gegee: \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \) 6.2.1 Bereken die waarde van \( k \) as \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \) - NSC Mathematics - Question 6 - 2022 - Paper 2

Step 1

Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term:

96%

114 rated

Answer

First, we simplify the expression:

sin10+tan(360θ)sin20cos440\frac{\sin 10^{\circ} + \tan(360^{\circ} - \theta) \cdot \sin 20^{\circ}}{\cos 440^{\circ}}

Using identities:

  • Since ( \cos 440^{\circ} = \cos(440^{\circ} - 360^{\circ}) = \cos 80^{\circ} ), we have:
sin10+tan(360θ)sin20cos80\frac{\sin 10^{\circ} + \tan(360^{\circ} - \theta) \cdot \sin 20^{\circ}}{\cos 80^{\circ}}

Now, using the identity ( \tan(360^{\circ} - \theta) = -\tan\theta ), this results in:

sin10tanθsin20cos80\frac{\sin 10^{\circ} - \tan \theta \cdot \sin 20^{\circ}}{\cos 80^{\circ}}

Then, we apply the double angle identity:

tan(2A)=2tanA1tan2A\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}

Hence, it simplifies to:

12sin2θ1 - 2\sin^2\theta

Thus, we find that the final simplified term is:

cos2θ\cos 2\theta

Step 2

Bereken die waarde van k as \( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = k \cos 2x \).

99%

104 rated

Answer

To solve for ( k ), we first apply the sine sum and difference identities:

sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)

This leads us to:

sin(60+2x)+sin(602x)=2sin(60)cos(2x)\sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) = 2\sin(60^{\circ}) \cos(2x)

Substituting into our equation gives:

2sin(60)cos(2x)=kcos2x2 \sin(60^{\circ}) \cos(2x) = k \cos 2x

Dividing both sides by ( \cos 2x ) (assuming ( \cos 2x \neq 0 )), we get:

k=2sin(60)k = 2 \sin(60^{\circ})

Calculating values, since ( \sin(60^{\circ}) = \frac{\sqrt{3}}{2} ):

k=3k = \sqrt{3}

Step 3

As \( \cos x = \sqrt{t} \), bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van \( \tan 60^{\circ}[\sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x)] \) in terme van \( t \).

96%

101 rated

Answer

Using the previously obtained result for ( \sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x) ):

tan60[sin(60+2x)+sin(602x)]=tan602sin(60)cos(2x)\tan 60^{\circ}[\sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x)] = \tan 60^{\circ} \cdot 2\sin(60^{\circ}) \cos(2x)

Substituting the known values:

  • Since ( \tan 60^{\circ} = \sqrt{3} ) and ( \sin(60^{\circ}) = \frac{\sqrt{3}}{2} ), we have:
tan60232cos(2x)=3cos(2x)\tan 60^{\circ} \cdot 2 \frac{\sqrt{3}}{2} \cos(2x) = \sqrt{3}\cdot \cos(2x)

Now, using the original relationship and value of ( \cos x ):

cosx=tcos(2x)=2cos2x1=2t1\cos x = \sqrt{t} \Rightarrow \cos(2x) = 2\cos^{2} x - 1 = 2t - 1

Thus we find:

tan60[sin(60+2x)+sin(602x)]=3(2t1)\tan 60^{\circ}[\sin(60^{\circ} + 2x) + \sin(60^{\circ} - 2x)] = \sqrt{3}(2t - 1)

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;