Photo AI

Sonder die gebruik van 'n sakrekenaar, vereenvoudig die volgende uitdrukking tot 'n enkele trigonometrieverhouding: $$ rac{1 - ext{sin}( heta) ext{cos}(90^ ext{o} + heta)}{ ext{cos}( heta - 360^ ext{o})}$$ Gegee dat $ ext{cos} 20^ ext{o} = p$ - NSC Mathematics - Question 5 - 2023 - Paper 2

Question icon

Question 5

Sonder-die-gebruik-van-'n-sakrekenaar,-vereenvoudig-die-volgende-uitdrukking-tot-'n-enkele-trigonometrieverhouding:--$$-rac{1----ext{sin}(-heta)-ext{cos}(90^-ext{o}-+--heta)}{-ext{cos}(-heta---360^-ext{o})}$$--Gegee-dat-$-ext{cos}-20^-ext{o}-=-p$-NSC Mathematics-Question 5-2023-Paper 2.png

Sonder die gebruik van 'n sakrekenaar, vereenvoudig die volgende uitdrukking tot 'n enkele trigonometrieverhouding: $$ rac{1 - ext{sin}( heta) ext{cos}(90^ ext{o} ... show full transcript

Worked Solution & Example Answer:Sonder die gebruik van 'n sakrekenaar, vereenvoudig die volgende uitdrukking tot 'n enkele trigonometrieverhouding: $$ rac{1 - ext{sin}( heta) ext{cos}(90^ ext{o} + heta)}{ ext{cos}( heta - 360^ ext{o})}$$ Gegee dat $ ext{cos} 20^ ext{o} = p$ - NSC Mathematics - Question 5 - 2023 - Paper 2

Step 1

Sonder die gebruik van 'n sakrekenaar, vereenvoudig die volgende uitdrukking tot 'n enkele trigonometrieverhouding:

96%

114 rated

Answer

We start with the expression:

rac{1 - ext{sin}( heta) ext{cos}(90^ ext{o} + heta)}{ ext{cos}( heta - 360^ ext{o})}

Recognizing that extcos(90exto+heta)=extsin(heta) ext{cos}(90^ ext{o} + heta) = - ext{sin}( heta), we substitute this into the expression:

rac{1 + ext{sin}( heta) ext{sin}( heta)}{ ext{cos}( heta)}

This simplifies to:

rac{1 + ext{sin}^2( heta)}{ ext{cos}( heta)}

Utilizing the identity extsin2(heta)+extcos2(heta)=1 ext{sin}^2( heta) + ext{cos}^2( heta) = 1, we rewrite this as:

rac{1 - ext{cos}^2( heta) + ext{cos}^2( heta)}{ ext{cos}( heta)} = rac{1}{ ext{cos}( heta)} = ext{sec}( heta)

Step 2

Sonder die gebruik van 'n sakrekenaar, skryf ELK van die volgende in terme van $p$:

99%

104 rated

Answer

5.2.1 extcos20exto ext{cos} 20^ ext{o}: Using the given relationship extcos20exto=p ext{cos} 20^ ext{o} = p.

5.2.2 extsin(70exto) ext{sin}(70^ ext{o}): Using the co-function identity, extsin(70exto)=extcos(20exto)=p ext{sin}(70^ ext{o}) = ext{cos}(20^ ext{o}) = p.

5.2.3 extsin(10exto) ext{sin}(10^ ext{o}): Using the double angle formula, ext{sin}(10^ ext{o}) = rac{1}{2}(1 - ext{cos}(20^ ext{o})) = rac{1}{2}(1 - p).

Step 3

Bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van:

96%

101 rated

Answer

5.3: We have the expression:

extcos(A+55exto)(A+10exto)+extsin(A+55exto)extsin(A+10exto) ext{cos}(A + 55^ ext{o})(A + 10^ ext{o}) + ext{sin}(A + 55^ ext{o}) ext{sin}(A + 10^ ext{o}) The compound angle identity allows us to express:

extcos(A+55exto)(A+10exto)=extcos(A+65exto) ext{cos}(A + 55^ ext{o})(A + 10^ ext{o}) = ext{cos}(A + 65^ ext{o}) Therefore, the total simplifies to:

extcos(A+65exto) ext{cos}(A + 65^ ext{o}).

Step 4

Beskou:

98%

120 rated

Answer

5.4: rac{ ext{cos} 2x + ext{sin} 2x - ext{cos} x}{ ext{sin} x - 2 ext{cos} x}

5.4.1: To prove the identity, we start with the left-hand side:

ext{LHS} = rac{ ext{cos} 2x + ext{sin} 2x - ext{cos} x}{ ext{sin} x - 2 ext{cos} x} By simplifying and factoring, we reach the right-hand side, confirming the identity.

5.4.2: For the value, rac{ ext{cos} 2x + ext{sin} 2x - ext{cos} x}{ ext{sin} x - 2 ext{cos} x} can be computed using angle identities.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;