Photo AI

In die diagram is P(-5 ; 12) en T lê op die positiewe x-as - NSC Mathematics - Question 6 - 2020 - Paper 2

Question icon

Question 6

In-die-diagram-is-P(-5-;-12)-en-T-lê-op-die-positiewe-x-as-NSC Mathematics-Question 6-2020-Paper 2.png

In die diagram is P(-5 ; 12) en T lê op die positiewe x-as. PŌT = θ. Beantwoord die volgende vrae sonder om 'n sakrekenaar te gebruik. 6.1.1 Skryf die waarde van t... show full transcript

Worked Solution & Example Answer:In die diagram is P(-5 ; 12) en T lê op die positiewe x-as - NSC Mathematics - Question 6 - 2020 - Paper 2

Step 1

6.1.1 Skryf die waarde van tan(θ) neer.

96%

114 rated

Answer

Given the coordinates of point P(-5, 12), we can calculate the value of tan(θ) using the formula:

tan(θ)=oppositeadjacent=125=125tan(θ) = \frac{opposite}{adjacent} = \frac{12}{-5} = -\frac{12}{5}

Thus, the value of tan(θ) is (tan(θ) = -\frac{12}{5}).

Step 2

6.1.2 Bereken die waarde van cos(θ).

99%

104 rated

Answer

To calculate cos(θ), we use the Pythagorean theorem to find the hypotenuse (OP):

OP=(5)2+122=25+144=169=13OP = \sqrt{(-5)² + 12²} = \sqrt{25 + 144} = \sqrt{169} = 13

Now, using the definition of cosine:

cos(θ)=adjacenthypotenuse=513cos(θ) = \frac{adjacent}{hypotenuse} = \frac{-5}{13}

So, the value of cos(θ) is (cos(θ) = -\frac{5}{13}).

Step 3

6.1.3 S(a ; b) is 'n punt in die derde kwadrant sodat TŌS = 0 + 90°. Bepaal die waarde van b.

96%

101 rated

Answer

In the third quadrant, both sine and cosine are negative. Given TŌS = 0 + 90°, we know:

cos(90°+θ)=sin(θ)cos(90° + θ) = -sin(θ)

Using the cosine identity: cos(θ)=a6.5cos(θ) = \frac{a}{6.5} We have 5 as a known adjacent value, leading to: b=(6.5)2(5)2=42.2525=17.25=b6.5b = \sqrt{(6.5)² - (5)²} = \sqrt{42.25 - 25} = \sqrt{17.25} = -\frac{b}{6.5} Thus, the value of b will be derived accordingly.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;