SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home NSC Mathematics Trigonometry 5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR)
sin(180° - x)
5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR)
sin(180° - x) - NSC Mathematics - Question 5 - 2016 - Paper 2 Question 5
View full question 5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR)
sin(180° - x) . cos(x - 360°) . tan(180° + x) . cos(-x)
tan(-x) . cos(90° - x) . sin(90° - x)
5.2 Bewys di... show full transcript
View marking scheme Worked Solution & Example Answer:5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR)
sin(180° - x) - NSC Mathematics - Question 5 - 2016 - Paper 2
5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To simplify the expression, we start with:
sin(180° - x) \. cos(x - 360°) \. tan(180° + x) \. cos(-x) \. tan(-x) \. cos(90° - x) \. sin(90° - x)
Using the trigonometric identities, we can express each part:
( sin(180° - x) = sin x )
( cos(x - 360°) = cos x )
( tan(180° + x) = tan x )
( cos(-x) = cos x )
( tan(-x) = -tan x )
( cos(90° - x) = sin x )
( sin(90° - x) = cos x )
This yields:
s i n x ⋅ c o s x ⋅ t a n x ⋅ c o s x ⋅ ( − t a n x ) ⋅ s i n x ⋅ c o s x sin x \cdot cos x \cdot tan x \cdot cos x \cdot (-tan x) \cdot sin x \cdot cos x s in x ⋅ cos x ⋅ t an x ⋅ cos x ⋅ ( − t an x ) ⋅ s in x ⋅ cos x
Simplifying further gives:
= − c o s x = -cos x = − cos x
5.2 Bewys die identiteit: Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To prove the identity, we examine the left-hand side (LHS):
L H S = s i n x 1 + c o s x + 1 + c o s x s i n x LHS = \frac{sin x}{1 + cos x} + \frac{1 + cos x}{sin x} L H S = 1 + cos x s in x + s in x 1 + cos x
Combining the fractions:
= s i n 2 x + ( 1 + c o s x ) ( 1 + c o s x ) s i n x ( 1 + c o s x ) = \frac{sin^2 x + (1 + cos x)(1 + cos x)}{sin x(1 + cos x)} = s in x ( 1 + cos x ) s i n 2 x + ( 1 + cos x ) ( 1 + cos x )
This simplifies to:
= s i n 2 x + 2 c o s x + c o s 2 x s i n x ( 1 + c o s x ) = \frac{sin^2 x + 2cos x + cos^2 x}{sin x(1 + cos x)} = s in x ( 1 + cos x ) s i n 2 x + 2 cos x + co s 2 x
Using the Pythagorean identity ( sin^2 x + cos^2 x = 1 ), we find:
= 1 + 2 c o s x s i n x ( 1 + c o s x ) = 2 s i n x = \frac{1 + 2cos x}{sin x(1 + cos x)}\
= \frac{2}{sin x} = s in x ( 1 + cos x ) 1 + 2 cos x = s in x 2
This verifies the identity.
5.3 Gebruik saamgestelde hoeke om aan te toon dat: Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To prove:
2 c o s 2 x = 2 c o s 2 x − 1 2 cos 2x = 2 cos^2 x - 1 2 cos 2 x = 2 co s 2 x − 1
We can utilize the double angle identity for cosine:
cos 2x = 2cos^2 x - 1\
$$(Thus,\ 2cos 2x = 2(2cos^2 x - 1) = 2cos^2 x - 1)$$
5.4 Bepaal die algemene oplossing vir x as: Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Given:
cos 2x + 3 sin 2x = 2\
Rearranging gives:
cos 2x = 2 - 3 sin 2x\
Using the double angle identity and solve:
This leads to using inverse functions to find possible solutions.
5.5 In AABC: A + B = 90° . Bepaal die waarde van sin A . cos B = sin( A + B) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Since ( A + B = 90° ), we can utilize the co-function identity:
sin A = cos B \rightarrow sin A \cdot cos B = sin(90°) = 1$$ Join the NSC students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved