Photo AI

In die diagram is P(−3; 4) die middelpunt van die sirkel - NSC Mathematics - Question 4 - 2021 - Paper 2

Question icon

Question 4

In-die-diagram-is-P(−3;-4)-die-middelpunt-van-die-sirkel-NSC Mathematics-Question 4-2021-Paper 2.png

In die diagram is P(−3; 4) die middelpunt van die sirkel. V(k; 1) en W is die eindpunte van 'n middellyn. Die sirkel sny die y-as by B en C. BCVW is 'n koordeverhoog... show full transcript

Worked Solution & Example Answer:In die diagram is P(−3; 4) die middelpunt van die sirkel - NSC Mathematics - Question 4 - 2021 - Paper 2

Step 1

4.1 Die radius van die sirkel is $\sqrt{10}$. Bereken die waarde van $k$ as punt V regs van punt P geleë is. Toon ALLE berekening duidelik.

96%

114 rated

Answer

To determine the value of kk, we start by applying the distance formula between points P and V. We know the coordinates for P are (3,4)(-3, 4) and for V are (k,1)(k, 1):

PV=(k(3))2+(14)2=(k+3)2+(3)2=(k+3)2+9PV = \sqrt{(k - (-3))^{2} + (1 - 4)^{2}} = \sqrt{(k + 3)^{2} + (-3)^{2}} = \sqrt{(k + 3)^{2} + 9}

Setting the distance PV=10PV = \sqrt{10}, we solve:

(k+3)2+9=10\sqrt{(k + 3)^{2} + 9} = \sqrt{10}

Squaring both sides leads to:

(k+3)2+9=10(k + 3)^{2} + 9 = 10

(k+3)2=1(k + 3)^{2} = 1

Taking the square root gives:

k+3=1k + 3 = 1 or k+3=1k + 3 = -1.

Thus, k=2k = -2 or k=4k = -4. Since we seek the value of k where point V is to the right of point P, we discard k=4k = -4 and accept k=2k = -2.

Step 2

4.2 Die vergelyking van die sirkel word as $x^{2} + 6x + y^{2} - 8y + 15 = 0$ gegee. Bereken die lengte van BC.

99%

104 rated

Answer

To find the length of BC, we first convert the equation into standard form.

Completing the square gives:

x2+6x+y28y+15=0x^{2} + 6x + y^{2} - 8y + 15 = 0

For xx: x2+6x=(x+3)29x^{2} + 6x = (x + 3)^{2} - 9

For yy: y28y=(y4)216y^{2} - 8y = (y - 4)^{2} - 16

Substituting back, we have:

(x+3)2+(y4)210=0(x + 3)^{2} + (y - 4)^{2} - 10 = 0

Thus, the center is at (3,4)(-3, 4) and diameter = 2102\sqrt{10}, making radius = 10\sqrt{10}. The y-intercepts are determined from setting x=0x = 0:

0+6(0)+y28y+15=00 + 6(0) + y^{2} - 8y + 15 = 0

This simplifies to yield the y-coordinates for points B and C, then applying the distance formula gives the length BC = 2 units.

Step 3

4.3.1 As $k = -2$, bereken die grotte van: $\alpha$

96%

101 rated

Answer

Given k=2k = -2, we derive the slope of line BC using:

mBC=yCyBxCxBm_{BC} = \frac{y_{C} - y_{B}}{x_{C} - x_{B}}

Substituting values from our previous results leads us to:

mBC=350(4)=24=12m_{BC} = \frac{3 - 5}{0 - (-4)} = \frac{-2}{4} = -\frac{1}{2}

Then we find α\alpha using:

tan(α)=1+mBC1mBCtan(\alpha) = \left|\frac{1 + m_{BC}}{1 - m_{BC}}\right|

Where tan(α)tan(\alpha) simplifies to 11, leading us to conclude that:

α=45\alpha = 45^{\circ}.

Step 4

4.3.2 VWB

98%

120 rated

Answer

The value of VWB can be deduced through the properties of cyclic quadrilaterals, relationship between opposite angles, yielding:

VWB=135VWB = 135^{\circ}.

Step 5

4.4.1 Koördinate van Q, die middelpunt van die nuwe sirkel

97%

117 rated

Answer

To find the coordinates of Q, the new center, we reflect the original center P at the line y=1y = 1. The transformation yields:

If P is at (3,4)(−3, 4), then:

Q=(3,1+(14))=(3,2)Q = (−3, 1 + (1 − 4)) = (−3, −2)

Step 6

4.4.2 Vergelyking van die nuwe sirkel in die vorm $(x - a)^{2} + (y - b)^{2} = r^{2}$

97%

121 rated

Answer

The new circle has center Q at (3,2)(−3, −2) and maintaining radius of 10\sqrt{10}. Thus, the equation is:

(x+3)2+(y+2)2=10(x + 3)^{2} + (y + 2)^{2} = 10.

Step 7

4.4.3 Vergelykings van die lyne wat ewewydig aan die y-as gekke is en deur die snypunte van die twee sirkel gaan.

96%

114 rated

Answer

Finally, for the equations of lines parallel to the y-axis through intersection points: Using the circle equations derived, intersection points found earlier provide vertical lines at:

x=4 and x=0x = -4 \text{ and } x = 0.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;