Photo AI
Question 5
Gegee: $\sin A = 2p$ en $\cos A = p$ Bepaal die waarde van $\tan A.$ 5.1.1 Sonder die gebruik van 'n sakrekenaar, bepaal die waarde van $p$, as $A \in [180^{... show full transcript
Step 1
Step 2
Answer
Hier is ons gegee dat:
[
\sin A = 2p
]
[
\cos A = p
]
Vir in die derde kwadrant ( tot )
[
\sin A < 0 \quad \text{en} \quad \cos A < 0
]
Aangesien :
[
(2p)^2 + p^2 = 1\
4p^2 + p^2 = 1
]
[
5p^2 = 1
]
[
p^2 = \frac{1}{5}
]
[
p = \frac{1}{\sqrt{5}}
]
Step 3
Answer
Hier gebruik ons die kwadratiese formule:
[
2\sin^2 x - 5\sin x + 2 = 0
]
[
\Rightarrow a = 2, b = -5, c = 2
]
Met die kwadratiese formule:
[
\sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4(2)(2)}}{2(2)}
]
[
= \frac{5 \pm \sqrt{25 - 16}}{4} = \frac{5 \pm 3}{4}
]
[
\sin x = 2 , \text{of} , \sin x = \frac{1}{2}
]
Hier is onmoontlik.
Dus, .
Die algemene oplossing is: [ x = \frac{\pi}{6} + k \cdot 2\pi \text{ of } x = \frac{5\pi}{6} + k \cdot 2\pi , (k \in \mathbb{Z}) ]
Step 4
Answer
Die saamgesteldehoek-formule is:
[
\sin(a + b) = \sin a \cos b + \cos a \sin b
]
So:
[
\sin(x + 300^{\circ}) = \sin x \cos 300^{\circ} + \cos x \sin 300^{\circ}
]
Gegewe dat en , dan:
[
\sin(x + 300^{\circ}) = \sin x (\frac{1}{2}) + \cos x (-\frac{\sqrt{3}}{2})
]
[=rac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x
]
Step 5
Answer
Vir die berekening van die waarde het ons: [ \sin(300^{\circ}) = -\frac{\sqrt{3}}{2} , ext{en} , \cos(150^{\circ}) = -\frac{\sqrt{3}}{2} ]
Dan: [ -\frac{\sqrt{3}}{2} - (-\frac{\sqrt{3}}{2}) = -\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = 0 ]
Step 6
Answer
Begin met die linkerkant:
[
LHS = \tan(x + 1) = \frac{\sin(x + 1)}{\cos(x + 1)}
]
Gebruik die saamgesteldehoek-formules: [ \sin = \sin x \cos 1 + \cos x \sin 1 , ext{en} , \cos = \cos x \cos 1 - \sin x \sin 1 ]
Die uiteindelike uitdrukking sal wees:
[
LHS = \frac{\sin x + \cos x}{\sin x + \cos x} = RHS
]
Step 7
Step 8
Report Improved Results
Recommend to friends
Students Supported
Questions answered