5.1 P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon - NSC Mathematics - Question 5 - 2016 - Paper 2
Question 5
5.1 P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon. PÔR = PÓS = θ en OS = 6.
Bepaal, SONDERSonder die gebruik van 'n sakr... show full transcript
Worked Solution & Example Answer:5.1 P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon - NSC Mathematics - Question 5 - 2016 - Paper 2
Step 1
5.1.1 tan θ
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We can determine the value of \( an θ \) using the coordinates of point P. The coordinates are given as P(−√7; 3). Thus:
tanθ=adjacentopposite=−√73=−√73
Step 2
5.1.2 sin(−θ)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find \( ext{sin}(-θ) \, we can use the property of sine:
sin(−θ)=−sin(θ)
Using the triangle formed by the point P, we find:
sinθ=hypotenuseopposite=16+73=43
Then:
sin(−θ)=−43
Step 3
5.1.3 α
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find \( α \, we can use the cosine relationship. Since \( cos(2θ) = 2cos^2(θ) - 1 \, we need to find \( cos(θ) \).
Using:
sin2(θ)+cos2(θ)=1
Substituting:
(43)2+cos2(θ)=1
Calculating gives:
cos2(θ)=1−169=167
Thus:
cos(θ)=4√7
Thus, \( \alpha = \frac{\cos(2θ)}{6} \) can be calculated as:
α=66(2(4√7)2−1)=2(167−1)=−89
Step 4
5.2.1 Vereenvoudig 4sin x · cos x / 2sin x - 1
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To simplify:
2sinx−14sinx⋅cosx=2sinx−12sin2x
By the identity of double angles, \( an(2x) = \frac{2tan x}{1 - tan^2 x}\.
Step 5
5.2.2 Bereken vervolgens die waarde van 4sin15°cos15° / 2sin15° - 1
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!