Photo AI

5.1 P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon - NSC Mathematics - Question 5 - 2016 - Paper 2

Question icon

Question 5

5.1-P(−√7;-3)-en-S(a;-b)-is-punte-in-die-Cartesiese-vlak-soos-in-die-diagram-hieronder-getoon-NSC Mathematics-Question 5-2016-Paper 2.png

5.1 P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon. PÔR = PÓS = θ en OS = 6. Bepaal, SONDERSonder die gebruik van 'n sakr... show full transcript

Worked Solution & Example Answer:5.1 P(−√7; 3) en S(a; b) is punte in die Cartesiese vlak soos in die diagram hieronder getoon - NSC Mathematics - Question 5 - 2016 - Paper 2

Step 1

5.1.1 tan θ

96%

114 rated

Answer

We can determine the value of \( an θ \) using the coordinates of point P. The coordinates are given as P(−√7; 3). Thus:

tanθ=oppositeadjacent=37=37\tan θ = \frac{opposite}{adjacent} = \frac{3}{-√7} = -\frac{3}{√7}

Step 2

5.1.2 sin(−θ)

99%

104 rated

Answer

To find \( ext{sin}(-θ) \, we can use the property of sine:

sin(θ)=sin(θ)\sin(-θ) = -\sin(θ)

Using the triangle formed by the point P, we find:

sinθ=oppositehypotenuse=316+7=34\sin θ = \frac{opposite}{hypotenuse} = \frac{3}{\sqrt{16 + 7}} = \frac{3}{4}

Then:

sin(θ)=34\sin(-θ) = -\frac{3}{4}

Step 3

5.1.3 α

96%

101 rated

Answer

To find \( α \, we can use the cosine relationship. Since \( cos(2θ) = 2cos^2(θ) - 1 \, we need to find \( cos(θ) \).

Using:

sin2(θ)+cos2(θ)=1\sin^2(θ) + \cos^2(θ) = 1

Substituting:

(34)2+cos2(θ)=1\left(\frac{3}{4}\right)^2 + \cos^2(θ) = 1

Calculating gives:

cos2(θ)=1916=716\cos^2(θ) = 1 - \frac{9}{16} = \frac{7}{16}

Thus:

cos(θ)=74\cos(θ) = \frac{√7}{4}

Thus, \( \alpha = \frac{\cos(2θ)}{6} \) can be calculated as:

α=6(2(74)21)6=2(7161)=98\alpha = \frac{6(2(\frac{√7}{4})^2 - 1)}{6} = 2(\frac{7}{16} - 1) = -\frac{9}{8}

Step 4

5.2.1 Vereenvoudig 4sin x · cos x / 2sin x - 1

98%

120 rated

Answer

To simplify:

4sinxcosx2sinx1=2sin2x2sinx1\frac{4sin x · cos x}{2sin x - 1} = \frac{2sin 2x}{2sin x - 1}

By the identity of double angles, \( an(2x) = \frac{2tan x}{1 - tan^2 x}\.

Step 5

5.2.2 Bereken vervolgens die waarde van 4sin15°cos15° / 2sin15° - 1

97%

117 rated

Answer

To find:

4sin(15°)cos(15°)2sin(15°)1\frac{4sin(15°)cos(15°)}{2sin(15°)-1}

Using the identity for sine:

=2tan(2(15°))= 2tan(2(15°))

Thus:

=2tan(30°)=23= 2tan(30°) = 2√{3}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;