Photo AI

In die diagram is die grafieke van $ f(x) = 2 ext{sin}(2x) $ en $ g(x) = - ext{cos}(x + 45^{ ext{o}}) $ vir die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $ gesketst - NSC Mathematics - Question 6 - 2023 - Paper 2

Question icon

Question 6

In-die-diagram-is-die-grafieke-van-$-f(x)-=-2-ext{sin}(2x)-$-en-$-g(x)-=---ext{cos}(x-+-45^{-ext{o}})-$-vir-die-interval-$-x--ext{-e-}-[0^{-ext{o}};-180^{-ext{o}}]-$-gesketst-NSC Mathematics-Question 6-2023-Paper 2.png

In die diagram is die grafieke van $ f(x) = 2 ext{sin}(2x) $ en $ g(x) = - ext{cos}(x + 45^{ ext{o}}) $ vir die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $... show full transcript

Worked Solution & Example Answer:In die diagram is die grafieke van $ f(x) = 2 ext{sin}(2x) $ en $ g(x) = - ext{cos}(x + 45^{ ext{o}}) $ vir die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $ gesketst - NSC Mathematics - Question 6 - 2023 - Paper 2

Step 1

Skryf die periode van $ f $ neer.

96%

114 rated

Answer

Die periode van f(x)=2extsin(2x)f(x) = 2 ext{sin}(2x) is 180exto180^{ ext{o}}.

Step 2

Bepaal die waardeverzameling van $ g $ in die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $.

99%

104 rated

Answer

Om die waardeverzameling van g(x)=extcos(x+45exto)g(x) = - ext{cos}(x + 45^{ ext{o}}) te bepaal, moet ons die maksimum en minimum waardes vind. Gegewe dat extcos ext{cos} waardes tussen -1 en 1 wissel, is die waardeverzameling van gg:

g(x)exte[1;1] extdusg(x)exte[1;2]g(x) ext{ e } [-1; 1] \ ext{ dus } g(x) ext{ e } [-1; 2].

Step 3

Bepaal die waardes van $ x $, in die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $, waarvoor:

96%

101 rated

Answer

Step 4

f(x) \times g(x) > 0

98%

120 rated

Answer

Die produk f(x)×g(x)>0f(x) \times g(x) > 0 wanneer albei funksies positiewe of negatiewe waardes het. Dit kan geanaliseer word deur die tekens van ff en gg te bepaal in die interval [0exto;180exto][0^{ ext{o}}; 180^{ ext{o}}].

  • f(x)>0f(x) > 0 wanneer xexte[0exto;90exto]x ext{ e } [0^{ ext{o}}; 90^{ ext{o}}].
  • g(x)>0g(x) > 0 wanneer x+45extoexte[90exto;270exto]x + 45^{ ext{o}} ext{ e } [90^{ ext{o}}; 270^{ ext{o}}], of xexte[45exto;225exto]x ext{ e } [45^{ ext{o}}; 225^{ ext{o}}].

Dus, xexte[45exto;90exto]x ext{ e } [45^{ ext{o}}; 90^{ ext{o}}].

Step 5

f(x) + 1 > 0

97%

117 rated

Answer

Om te bepaal wanneer f(x)+1>0f(x) + 1 > 0, evalueer ons die uitdrukking:

2extsin(2x)+1>0 2extsin(2x)>1 extsin(2x)>0.52 ext{sin}(2x) + 1 > 0 \ 2 ext{sin}(2x) > -1 \ ext{sin}(2x) > -0.5

Hieruit volg dat 2xexte[30exto;150exto]2x ext{ e } [30^{ ext{o}}; 150^{ ext{o}}] en 210exto;330exto210^{ ext{o}}; 330^{ ext{o}}.

Dus, xexte[15exto;75exto]x ext{ e } [15^{ ext{o}}; 75^{ ext{o}}] of [105exto;165exto][105^{ ext{o}}; 165^{ ext{o}}].

Step 6

Bepaal die waarde(s) van $ k $ in die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $.

97%

121 rated

Answer

Gegewe dat p(x)=f(x)p(x) = -f(x), moet ons die punte waar dit gelyk is aan 1-1 bepaal. Dit beteken f(x)=1f(x) = 1.

2extsin(2x)=1 extsin(2x)=0.5 2x=30extoextor150exto x=15extoextor75exto2 ext{sin}(2x) = 1 \ ext{sin}(2x) = 0.5 \ 2x = 30^{ ext{o}} ext{ or } 150^{ ext{o}} \ x = 15^{ ext{o}} ext{ or } 75^{ ext{o}}.

Step 7

Bepaal die vergelyking van $ h $.

96%

114 rated

Answer

Laastens, om g(45exto)g(45^{ ext{o}}) in links te vertaal, sal ons die buitenste term in die funksie verhef met 45 graad:

h(x)=extcos(x+90exto) h(x)=extsin(x)h(x) = - ext{cos}(x + 90^{ ext{o}}) \ h(x) = ext{sin}(x).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;