Photo AI

In die diagram is die grafieke van f(x) = -3sin \frac{x}{2} en g(x) = 2cos(x - 60°) in die interval x ∈ [ -180° ; 180° ] geskes - NSC Mathematics - Question 6 - 2018 - Paper 2

Question icon

Question 6

In-die-diagram-is-die-grafieke-van---f(x)-=--3sin-\frac{x}{2}---en--g(x)-=-2cos(x---60°)-in-die-interval---x-∈-[--180°-;-180°-]-geskes-NSC Mathematics-Question 6-2018-Paper 2.png

In die diagram is die grafieke van f(x) = -3sin \frac{x}{2} en g(x) = 2cos(x - 60°) in die interval x ∈ [ -180° ; 180° ] geskes. T(δ ; g) is 'n draai punt van... show full transcript

Worked Solution & Example Answer:In die diagram is die grafieke van f(x) = -3sin \frac{x}{2} en g(x) = 2cos(x - 60°) in die interval x ∈ [ -180° ; 180° ] geskes - NSC Mathematics - Question 6 - 2018 - Paper 2

Step 1

Skryf die periode van f neer.

96%

114 rated

Answer

Die periode van f is 720°.

Step 2

Skryf die waardeverzameling van g neer.

99%

104 rated

Answer

Die waardeverzameling van g is y ∈ [−2 ; 2].

Step 3

Bereken f(−120°) − g(−120°).

96%

101 rated

Answer

Vir f(−120°):
f(−120°) = -3sin \left( \frac{-120°}{2} \right) = -3sin(−60°) = \frac{4 + 3\sqrt{3}}{2}.

Vir g(−120°):
g(−120°) = 2cos(−120° - 60°) = 2cos(−180°) = 2(-1) = -2.

Dus, f(−120°) − g(−120°) = \frac{4 + 3\sqrt{3}}{2} - (−2) = \frac{4 + 3\sqrt{3}}{2} + 2.

Step 4

Gebruik die grafieke om die waardes van x, in die interval x ∈ [−180°; 180°], te bepaal waarvoor.

98%

120 rated

Answer

6.4.1 g(x) > 0:
Die x-intercepts van g is by x = −30° en x = 150°.
So, g(x) > 0 wanneer −30° < x < 150°.

6.4.2 f(x) < 0:
Die x-intercepts van f is by x = −120° en x = 120°.
So, f(x) < 0 wanneer −180° < x < −120° of 120° < x < 180°.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;