In die diagram is die grafieke van
$f(x) = ext{sin} 2x$ en $h(x) = ext{cos}(x-45^{ ext{o}})$ vir die interval
$x ext{ E } [-180^{ ext{o}}; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2
Question 6
In die diagram is die grafieke van
$f(x) = ext{sin} 2x$ en $h(x) = ext{cos}(x-45^{ ext{o}})$ vir die interval
$x ext{ E } [-180^{ ext{o}}; 180^{ ext{o}}]$.
... show full transcript
Worked Solution & Example Answer:In die diagram is die grafieke van
$f(x) = ext{sin} 2x$ en $h(x) = ext{cos}(x-45^{ ext{o}})$ vir die interval
$x ext{ E } [-180^{ ext{o}}; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2
Step 1
Skryf die periode van $f$ neer.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die periode van die funksie f(x)=extsin2x is 180exto.
Step 2
Bepaal die $x$-koördinaat van B.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die x-koördinaat van punt B is −75exto.
Step 3
Gebruik die grafieke om $2 ext{sin} x ext{cos} x ext{≤} rac{1}{ ext{√}2} ext{sin} x$ vir die interval $x ext{ E } [-180^{ ext{o}}; 180^{ ext{o}}]$ op te los. Toon ALLE bewerkings.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om die ongelykheid op te los:
egin{align*} ext{sin} 2x & ext{≤} rac{1}{ ext{√}2} ext{sin} x\ ext{sin} 2x & ext{≤} ext{cos} 45^{ ext{o}} ext{cos} x + ext{sin} 45^{ ext{o}} ext{sin} x\ ext{sin} 2x & ext{≤} ext{cos}(x - 45^{ ext{o}})\ x & ext{ E } [-75^{ ext{o}}; 165^{ ext{o}}]\ ext{cos}(x - 45^{ ext{o}}) & ext{≤} 0\ ext{Thus, the intervals we calculate will lead us to find the solutions.}\ ext{Answer: } x ext{ values for the solution are obtained from the inequality above.} ext{ Use graphical or tabular methods to find the exact intersections.} ext{ Values include certain ranges derived from } [-75^{ ext{o}}, 165^{ ext{o}}].