Photo AI

Sonder die gebruik van 'n sakrekenaar, bepaal die volgende in terme van sin 36°: 6.1.1 sin 324° 6.1.2 cos 72° Bewys die identiteit: $$1 - \frac{tan^2 \theta}{1 + tan^2 \theta} = cos^2 \theta$$ 6.3 Gebruik VRAAG 6.2 om die algemene oplossing van die volgende te bepaal: $$\frac{tan^2 1}{1 + tan^2 1} = \frac{1}{4}$$ Gegee: $$cos(A - B) = cosAcosB + sinAsinB$$ 6.4.1 Gebruik die formule van $cos(A - B)$ en lei in formule vir $sin(A - B)$ af - NSC Mathematics - Question 6 - 2017 - Paper 2

Question icon

Question 6

Sonder-die-gebruik-van-'n-sakrekenaar,-bepaal-die-volgende-in-terme-van--sin-36°:--6.1.1--sin-324°---6.1.2--cos-72°----Bewys-die-identiteit:---$$1---\frac{tan^2-\theta}{1-+-tan^2-\theta}-=-cos^2-\theta$$-6.3---Gebruik-VRAAG-6.2-om-die-algemene-oplossing-van-die-volgende-te-bepaal:---$$\frac{tan^2-1}{1-+-tan^2-1}-=-\frac{1}{4}$$--Gegee:---$$cos(A---B)-=-cosAcosB-+-sinAsinB$$--6.4.1---Gebruik-die-formule-van--$cos(A---B)$--en-lei-in-formule-vir--$sin(A---B)$-af-NSC Mathematics-Question 6-2017-Paper 2.png

Sonder die gebruik van 'n sakrekenaar, bepaal die volgende in terme van sin 36°: 6.1.1 sin 324° 6.1.2 cos 72° Bewys die identiteit: $$1 - \frac{tan^2 \the... show full transcript

Worked Solution & Example Answer:Sonder die gebruik van 'n sakrekenaar, bepaal die volgende in terme van sin 36°: 6.1.1 sin 324° 6.1.2 cos 72° Bewys die identiteit: $$1 - \frac{tan^2 \theta}{1 + tan^2 \theta} = cos^2 \theta$$ 6.3 Gebruik VRAAG 6.2 om die algemene oplossing van die volgende te bepaal: $$\frac{tan^2 1}{1 + tan^2 1} = \frac{1}{4}$$ Gegee: $$cos(A - B) = cosAcosB + sinAsinB$$ 6.4.1 Gebruik die formule van $cos(A - B)$ en lei in formule vir $sin(A - B)$ af - NSC Mathematics - Question 6 - 2017 - Paper 2

Step 1

6.1.1 sin 324°

96%

114 rated

Answer

To find ( sin 324° ), we can use the angle's reference angle. Since ( 324° = 360° - 36° ), it follows that:

sin(324°)=sin(36°)sin(324°) = -sin(36°)

Thus, ( sin 324° = -sin(36°) ).

Step 2

6.1.2 cos 72°

99%

104 rated

Answer

Using the double angle identity, we have:

cos(72°)=cos(2×36°)=12sin2(36°)cos(72°) = cos(2 \times 36°) = 1 - 2sin^2(36°)

From this, we can express ( cos 72° ) in terms of ( sin 36° ).

Step 3

Bewys die identiteit:

96%

101 rated

Answer

To prove the identity:

1tan2θ1+tan2θ=cos2θ1 - \frac{tan^2 \theta}{1 + tan^2 \theta} = cos^2 \theta

we start with the left-hand side:

LHS=1sin2θcos2θ1+sin2θcos2θ=1sin2θcos2θ+sin2θ=1sin2θ1=cos2θLHS = 1 - \frac{\frac{sin^2 \theta}{cos^2 \theta}}{1 + \frac{sin^2 \theta}{cos^2 \theta}} = 1 - \frac{sin^2 \theta}{cos^2 \theta + sin^2 \theta}= 1 - \frac{sin^2 \theta}{1} = cos^2 \theta

Thus, ( LHS = RHS ), verifying the identity.

Step 4

6.3

98%

120 rated

Answer

Using the identity from 6.2:

tan211+tan21=14\frac{tan^2 1}{1 + tan^2 1} = \frac{1}{4}

we rearrange:

tan21=14(1+tan21)tan21=14+14tan21tan^2 1 = \frac{1}{4}(1 + tan^2 1) \Rightarrow tan^2 1 = \frac{1}{4} + \frac{1}{4}tan^2 1

Rearranging gives:

34tan21=14tan21=13\frac{3}{4}tan^2 1 = \frac{1}{4} \Rightarrow tan^2 1 = \frac{1}{3}

Solving for x gives multiple solutions.

Step 5

6.4.1

97%

117 rated

Answer

Using the cos difference identity:

sin(AB)=cos(90°(AB))sin(A - B) = cos(90° - (A - B))

Thus:

sin(AB)=cos(90°A+B)=sinAcosBcosAsinBsin(A - B) = cos(90° - A + B) = sinAcosB - cosAsinB.

Step 6

6.4.2

97%

121 rated

Answer

To show:

sin(x+64°)cos(x+379°)+sin(x+19°)cos(x+244°)=12sin(x + 64°)cos(x + 379°) + sin(x + 19°)cos(x + 244°) = \frac{1}{\sqrt{2}}

we expand both terms using sum identities:

=sin(x)cos(64°)+cos(x)sin(64°)cos(x+379°)+cos(19°)sin(x+244°)= sin(x)cos(64°) + cos(x)sin(64°)cos(x + 379°) + cos(19°)sin(x + 244°)

After simplification and using relevant angle reductions, we have established the statement, confirming it is valid for all x.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;