Photo AI

FIGUUR I toon 'n oprit wat na die ingang van 'n gebou lei - NSC Mathematics - Question 8 - 2022 - Paper 2

Question icon

Question 8

FIGUUR-I-toon-'n-oprit-wat-na-die-ingang-van-'n-gebou-lei-NSC Mathematics-Question 8-2022-Paper 2.png

FIGUUR I toon 'n oprit wat na die ingang van 'n gebou lei. B, C en D lê op dieselfde horisontale vlak. Die loodregte hoogte (AC) van die oprit is 0,5 m en die hoogte... show full transcript

Worked Solution & Example Answer:FIGUUR I toon 'n oprit wat na die ingang van 'n gebou lei - NSC Mathematics - Question 8 - 2022 - Paper 2

Step 1

8.1 Bereken die lengte van AB.

96%

114 rated

Answer

To find the length of AB, we use the sine ratio:

0.5AB=sin(15°)\frac{0.5}{AB} = \sin(15°)

Rearranging gives us:

AB=0.5sin(15°)AB = \frac{0.5}{\sin(15°)}

Calculating this yields:

AB1.93mAB \approx 1.93 \, \text{m}

Step 2

8.2 Bereken die lengte van BE.

99%

104 rated

Answer

Using the cosine rule to find BE:

BE2=AB2+AE22(AB)(AE)cos(120°)BE^2 = AB^2 + AE^2 - 2(AB)(AE) \cos(120°)

Substituting the values:

BE2=(1.93)2+(0.915)22(1.93)(0.915)cos(120°)BE^2 = (1.93)^2 + (0.915)^2 - 2(1.93)(0.915)\cos(120°)

Calculating this gives:

BE2.52mBE \approx 2.52 \, \text{m}

Step 3

8.3 Bereken die oppervlakte van ABFD.

96%

101 rated

Answer

Given that BF = FD = \frac{5}{7}BE, we find:

BF=FD=57(2.52)1.80mBF = FD = \frac{5}{7}(2.52) \approx 1.80 \, \text{m}

Area of triangle ABFD:

AreaABFD=12(BF)(FD)sin(75°)\text{Area}_{ABFD} = \frac{1}{2}(BF)(FD) \sin(75°)

Substituting:

AreaABFD=12(1.80)(1.80)sin(75°)1.56m2\text{Area}_{ABFD} = \frac{1}{2}(1.80)(1.80) \sin(75°) \approx 1.56 \, \text{m}^2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;