Applying the sine rule in triangle QST:
TSQT=sin(x)sin(180°−2x)
Where TS = QS = 5 tan x, substituting gives:
QT=TS⋅sin(180°−2x)sin(x)
Using the identity sin(180°−θ)=sin(θ):
QT=5tanx⋅sin(2x)sin(x)
We know that sin(2x)=2sin(x)cos(x), thus:
QT=2sin(x)cos(x)5tanx⋅sin(x)
This simplifies to:
QT=2cos(x)5⋅1=10sinx