Photo AI

In die diagram hieronder is T 'n haak in die plafon van 'n kunsgalery - NSC Mathematics - Question 8 - 2021 - Paper 2

Question icon

Question 8

In-die-diagram-hieronder-is-T-'n-haak-in-die-plafon-van-'n-kunsgalery-NSC Mathematics-Question 8-2021-Paper 2.png

In die diagram hieronder is T 'n haak in die plafon van 'n kunsgalery. Q, S en R is punte op dieselfde horizontale vlak waarvan drie persone na die haak T kyk. Die h... show full transcript

Worked Solution & Example Answer:In die diagram hieronder is T 'n haak in die plafon van 'n kunsgalery - NSC Mathematics - Question 8 - 2021 - Paper 2

Step 1

8.1 Bewys dat QS = 5 tan x

96%

114 rated

Answer

In triangle QSR, using the sine rule:

QSQR=sin(90°+x)sin(x)\frac{QS}{QR} = \frac{sin(90° + x)}{sin(x)}

Substituting for QR:

QS=QRsin(x)sin(90°+x)QS = QR \cdot \frac{sin(x)}{sin(90° + x)}

Since sin(90°+x)=cos(x)sin(90° + x) = cos(x), we have:

QS=5sin(x)cos(x)=5tanxQS = 5 \cdot \frac{sin(x)}{cos(x)} = 5 \tan{x}

Step 2

8.2 Bewys dat die lengte van QT = 10 sin x

99%

104 rated

Answer

Applying the sine rule in triangle QST:

QTTS=sin(180°2x)sin(x)\frac{QT}{TS} = \frac{sin(180° - 2x)}{sin(x)}

Where TS = QS = 5 tan x, substituting gives:

QT=TSsin(x)sin(180°2x)QT = TS \cdot \frac{sin(x)}{sin(180° - 2x)}

Using the identity sin(180°θ)=sin(θ)sin(180° - θ) = sin(θ):

QT=5tanxsin(x)sin(2x)QT = 5 tan x \cdot \frac{sin(x)}{sin(2x)}

We know that sin(2x)=2sin(x)cos(x)sin(2x) = 2 sin(x) cos(x), thus:

QT=5tanxsin(x)2sin(x)cos(x)QT = \frac{5 tan x \cdot sin(x)}{2 sin(x) cos(x)}

This simplifies to:

QT=512cos(x)=10sinxQT = \frac{5 \cdot 1}{2 cos(x)} = 10 sin x

Step 3

8.3 Bereken die oppervlakte van ΔTQR as TQR = 70° en x = 25°

96%

101 rated

Answer

To find the area of triangle ΔTQR, we use the formula:

Area=12absin(C)Area = \frac{1}{2} \cdot a \cdot b \cdot sin(C)

Where a and b are lengths QT and QR, and C is angle TQR:

Substituting QT = 10 sin(25°), QR = 5, and angle TQR = 70°:

Area=12(10sin(25°))5sin(70°)Area = \frac{1}{2} \cdot (10 sin(25°)) \cdot 5 \cdot sin(70°)

Calculating further:

Area=502sin(25°)sin(70°)Area = \frac{50}{2} \cdot sin(25°) \cdot sin(70°)

Thus, the area:

Area9.93unit2Area ≈ 9.93 unit^2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;