Photo AI

'n Steer Q₁ met 'n lading van -2,5 μC word 1 m vanaf 'n tweede sfeer Q₂ met 'n lading van +6 μC geplaas - NSC Physical Sciences - Question 8 - 2016 - Paper 1

Question icon

Question 8

'n-Steer-Q₁-met-'n-lading-van--2,5-μC-word-1-m-vanaf-'n-tweede-sfeer-Q₂-met-'n-lading-van-+6-μC-geplaas-NSC Physical Sciences-Question 8-2016-Paper 1.png

'n Steer Q₁ met 'n lading van -2,5 μC word 1 m vanaf 'n tweede sfeer Q₂ met 'n lading van +6 μC geplaas. Die sferes lê langs 'n regtuig, soos in die diagram hieronde... show full transcript

Worked Solution & Example Answer:'n Steer Q₁ met 'n lading van -2,5 μC word 1 m vanaf 'n tweede sfeer Q₂ met 'n lading van +6 μC geplaas - NSC Physical Sciences - Question 8 - 2016 - Paper 1

Step 1

Toon, met behulp van 'n VEKTORDIAGRAM, waarom die netto elektriese veld by punt X nie nul kan wees nie.

96%

114 rated

Answer

In this scenario, we consider the contributions of the electric fields due to both charges Q₁ and Q₂ at point X. Since charge Q₁ has a negative charge of -2.5 μC and charge Q₂ has a positive charge of +6 μC, the electric field created by Q₁ will point towards it, while the electric field due to Q₂ will point away from it.

To illustrate this, we can draw a vector diagram:

  • The electric field vector due to Q₁, denoted as EQ1E_{Q1}, points to the left (towards Q₁).
  • The electric field vector due to Q₂, denoted as EQ2E_{Q2}, points to the right (away from Q₂).

Since both vectors EQ1E_{Q1} and EQ2E_{Q2} are not equal in magnitude, the resultant electric field at point X cannot be zero, as they act in opposite directions but have different strengths.

Step 2

Bereken die netto elektriese veld by punt P as gevolg van die twee geleande sferes Q₁ en Q₂.

99%

104 rated

Answer

To calculate the electric field at point P due to spheres Q₁ and Q₂, we use the formula for the electric field due to a point charge:

E=kQr2E = k \frac{Q}{r^2}

where EE is the electric field, k=9×109N\cdotpm2/extC2k = 9 \times 10^9 \, \text{N·m}^2/ ext{C}^2, QQ is the charge, and rr is the distance from the charge to the point of interest.

  1. For charge Q₁ (-2.5 μC): EQ1=k2.5×106(0.3)2=250N\cdotpC1 to the leftE_{Q1} = k \frac{-2.5 \times 10^{-6}}{(0.3)^{2}} = 250 \, \text{N·C}^{-1}\text{ to the left}

  2. For charge Q₂ (+6 μC): EQ2=k6×106(10.3)2=31952.66N\cdotpC1 to the leftE_{Q2} = k \frac{6 \times 10^{-6}}{(1-0.3)^{2}} = 31 952.66 \, \text{N·C}^{-1}\text{ to the left}

To find the total electric field EPE_P at point P, we sum these two contributions:

EP=EQ2+EE,2.5µC=31952.66+250=281952.66N\cdotpC1 to the leftE_P = E_{Q2} + E_{E, -2.5 µC} = 31 952.66 + 250 = 281 952.66 \, \text{N·C}^{-1}\text{ to the left}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;