Photo AI

Gegee: $f(x) = x^2 - 3x - 10$ Los op vir $x$: 1.1.1 $f(x) = 0$ 1.1.2 $f(x) < 0$ en stel die oplossing op $n$ getallen voor Los op vir $x$: $2x^2 - 11x = -7x$ (korrekt tot TWEE desimale plekke) Los op vir $x$ en $y$: $y - x + 1 = 0$ en $y + 7 = x^2 + 2x$ Die formule wat gebruik word om die weerstand in die diagram hieronder te bereken, in 'n stroombaan waar resistors in parallel gekoppel is, word gegee deur: $$ rac{1}{R_p} = rac{1}{R_1} + rac{1}{R_2}$$ - $R_p$ = totale weerstand in ohm $( ext{Ω})$ - $R_1$ = weerstand van resistor 1 in ohm $( ext{Ω})$ - $R_2$ = weerstand van resistor 2 in ohm $( ext{Ω})$ 1.4.1 Maak $R_p$ die onderwerp van die formule - NSC Technical Mathematics - Question 1 - 2022 - Paper 1

Question icon

Question 1

Gegee:---$f(x)-=-x^2---3x---10$----Los-op-vir-$x$:---1.1.1-$f(x)-=-0$----1.1.2-$f(x)-<-0$-en-stel-die-oplossing-op-$n$-getallen-voor-----Los-op-vir-$x$:---$2x^2---11x-=--7x$-(korrekt-tot-TWEE-desimale-plekke)----Los-op-vir-$x$-en-$y$:---$y---x-+-1-=-0$-en-$y-+-7-=-x^2-+-2x$-----Die-formule-wat-gebruik-word-om-die-weerstand-in-die-diagram-hieronder-te-bereken,-in-'n-stroombaan-waar-resistors-in-parallel-gekoppel-is,-word-gegee-deur:---$$-rac{1}{R_p}-=--rac{1}{R_1}-+--rac{1}{R_2}$$------$R_p$-=-totale-weerstand-in-ohm-$(-ext{Ω})$-----$R_1$-=-weerstand-van-resistor-1-in-ohm-$(-ext{Ω})$-----$R_2$-=-weerstand-van-resistor-2-in-ohm-$(-ext{Ω})$----1.4.1-Maak-$R_p$-die-onderwerp-van-die-formule-NSC Technical Mathematics-Question 1-2022-Paper 1.png

Gegee: $f(x) = x^2 - 3x - 10$ Los op vir $x$: 1.1.1 $f(x) = 0$ 1.1.2 $f(x) < 0$ en stel die oplossing op $n$ getallen voor Los op vir $x$: $2x^2 - 11... show full transcript

Worked Solution & Example Answer:Gegee: $f(x) = x^2 - 3x - 10$ Los op vir $x$: 1.1.1 $f(x) = 0$ 1.1.2 $f(x) < 0$ en stel die oplossing op $n$ getallen voor Los op vir $x$: $2x^2 - 11x = -7x$ (korrekt tot TWEE desimale plekke) Los op vir $x$ en $y$: $y - x + 1 = 0$ en $y + 7 = x^2 + 2x$ Die formule wat gebruik word om die weerstand in die diagram hieronder te bereken, in 'n stroombaan waar resistors in parallel gekoppel is, word gegee deur: $$ rac{1}{R_p} = rac{1}{R_1} + rac{1}{R_2}$$ - $R_p$ = totale weerstand in ohm $( ext{Ω})$ - $R_1$ = weerstand van resistor 1 in ohm $( ext{Ω})$ - $R_2$ = weerstand van resistor 2 in ohm $( ext{Ω})$ 1.4.1 Maak $R_p$ die onderwerp van die formule - NSC Technical Mathematics - Question 1 - 2022 - Paper 1

Step 1

1.1.1 $f(x) = 0$

96%

114 rated

Answer

To solve for xx, we set the quadratic equation to zero:

x23x10=0x^2 - 3x - 10 = 0 Using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1a = 1, b=3b = -3, c=10c = -10. Thus, x=(3)±(3)24(1)(10)2(1)x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-10)}}{2(1)}

Simplifying yields: x=3±9+402=3±492x = \frac{3 \pm \sqrt{9 + 40}}{2} = \frac{3 \pm \sqrt{49}}{2} Therefore, x=3+72=5orx=372=2x = \frac{3 + 7}{2} = 5 \quad \text{or} \quad x = \frac{3 - 7}{2} = -2 The solutions for xx are 55 and 2-2.

Step 2

1.1.2 $f(x) < 0$ en stel die oplossing op $n$ getallen voor

99%

104 rated

Answer

We need to find the critical points where the function is less than zero. We know the roots are x=2x = -2 and x=5x = 5. The intervals to test are:

  1. (,2)(-\infty, -2)
  2. (2,5)(-2, 5)
  3. (5,)(5, \infty)

Testing these intervals using a test point from each interval:

  • For x=3x = -3: f(3)=9+910=8>0f(-3) = 9 + 9 - 10 = 8 > 0
  • For x=0x = 0: f(0)=10<0f(0) = -10 < 0
  • For x=6x = 6: f(6)=361810=8>0f(6) = 36 - 18 - 10 = 8 > 0

Thus, the solution for f(x)<0f(x) < 0 occurs in the interval: Answer: (2,5)\text{Answer: } (-2, 5)

Step 3

1.2 Los op vir $x$: $2x^2 - 11x = -7x$

96%

101 rated

Answer

Rearranging gives: 2x24x=02x^2 - 4x = 0 Factoring out 2x2x: 2x(x2)=02x(x - 2) = 0 Thus, the solutions are: x=0orx=2x = 0 \quad \text{or} \quad x = 2

Step 4

1.3 Los op vir $x$ en $y$: $y - x + 1 = 0$ en $y + 7 = x^2 + 2x$

98%

120 rated

Answer

First, solve the linear equation for yy: y=x1y = x - 1 Substituting yy into the quadratic equation: x1+7=x2+2xx - 1 + 7 = x^2 + 2x This simplifies to: x2+2xx+8=0    x2+x+8=0x^2 + 2x - x + 8 = 0 \implies x^2 + x + 8 = 0 Using the quadratic formula: x=1±14(1)(8)2(1)x = \frac{-1 \pm \sqrt{1 - 4(1)(8)}}{2(1)} This results in complex roots: x=1±312x = \frac{-1 \pm \sqrt{-31}}{2} Thus, y=1±3121y = \frac{-1 \pm \sqrt{-31}}{2} - 1

Step 5

1.4.1 Maak $R_p$ die onderwerp van die formule.

97%

117 rated

Answer

Starting with the formula: 1Rp=1R1+1R2\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} We can rewrite this as: Rp=11R1+1R2R_p = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}

Step 6

1.4.2 Bereken vervolgens, andersins, die weerstand $R_p$ as: $R_1 = 40 \text{ Ω}$ en $R_2 = 45 \text{ Ω}$

97%

121 rated

Answer

Using the formula derived: Rp=1140+145R_p = \frac{1}{\frac{1}{40} + \frac{1}{45}} Calculating: 1Rp=140+145=45+401800=851800 \frac{1}{R_p} = \frac{1}{40} + \frac{1}{45} = \frac{45 + 40}{1800} = \frac{85}{1800} Therefore, Rp=18008521.18 ΩR_p = \frac{1800}{85} \approx 21.18 \text{ Ω}

Step 7

1.5 Evalueer $1101100_2 + 1100_2$ (Los jou antwoord in binêre vorm).

96%

114 rated

Answer

To add these binary numbers:

Align and add:

  1101100
+   1100

Starting from the right:

  1101100
+  001100
-----------
11000100 (carry over included)

Thus, 11011002+11002=1100010021101100_2 + 1100_2 = 11000100_2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;