Bepaal
$f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$ (5)
Bepaal:
6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$ (3)
6.2.2 $D_x[\sqrt{x + \pi p^3}]$ (3)
6.2.3 $f'(x)$ as $f(x) = \frac{1 - x}{x^2}$ (4)
Gegee $g(x) = -4x^2$
Bepaal:
g(2) (1)
6.3.2 Die vergelyking van die raaklyn aan $g$ by 'n punt waar $x = 2$ (4) - NSC Technical Mathematics - Question 6 - 2022 - Paper 1
Question 6
Bepaal
$f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$ (5)
Bepaal:
6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$ (3)
6.2.2 $D_x[\sqrt{x + \pi p^3}]$ (3)
6.... show full transcript
Worked Solution & Example Answer:Bepaal
$f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$ (5)
Bepaal:
6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$ (3)
6.2.2 $D_x[\sqrt{x + \pi p^3}]$ (3)
6.2.3 $f'(x)$ as $f(x) = \frac{1 - x}{x^2}$ (4)
Gegee $g(x) = -4x^2$
Bepaal:
g(2) (1)
6.3.2 Die vergelyking van die raaklyn aan $g$ by 'n punt waar $x = 2$ (4) - NSC Technical Mathematics - Question 6 - 2022 - Paper 1
Step 1
Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To determine the derivative using first principles, we use the formula:
f′(x)=limh→0hf(x+h)−f(x)
Substituting in the function:
f′(x)=limh→0h(5+(x+h))−(5+x)
This simplifies to:
f′(x)=limh→0hh=limh→01=1
Thus, f′(x)=1.
Step 2
Bepaal: 6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the derivative, we need to apply the product rule:
y=x(x+9)
Applying the product rule:
dxdy=1⋅(x+9)+x⋅1=x+9+x=2x+9
Step 3
Bepaal: 6.2.2 $D_x[\sqrt{x + \pi p^3}]$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using differentiation rules for composite functions, we apply the chain rule:
Let u=x+πp3, then:
Dx[u]=2u1⋅dxdu
Where:
dxdu=1
Thus,
Dx[x+πp3]=2x+πp31
Step 4
Bepaal: 6.2.3 $f'(x)$ as $f(x) = \frac{1 - x}{x^2}$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To calculate the derivative, we utilize the quotient rule: