Photo AI

The diagram below shows farmland in the form of a cyclic quadrilateral PQRS - NSC Technical Mathematics - Question 6 - 2021 - Paper 2

Question icon

Question 6

The-diagram-below-shows-farmland-in-the-form-of-a-cyclic-quadrilateral-PQRS-NSC Technical Mathematics-Question 6-2021-Paper 2.png

The diagram below shows farmland in the form of a cyclic quadrilateral PQRS. The land has the following dimensions: PQ = 1200 m QR = 750 m ∠Q = 60° ∠R1 = 40.5° P, ... show full transcript

Worked Solution & Example Answer:The diagram below shows farmland in the form of a cyclic quadrilateral PQRS - NSC Technical Mathematics - Question 6 - 2021 - Paper 2

Step 1

6.1 The length of PR

96%

114 rated

Answer

To find the length of PR, we can apply the cosine rule:

PR2=QR2+PQ22imesQRimesPQimesextcos(Q)PR^2 = QR^2 + PQ^2 - 2 imes QR imes PQ imes ext{cos}(Q) Substituting the values:

PR2=(750)2+(1200)22imes(750)imes(1200)imesextcos(60°)PR^2 = (750)^2 + (1200)^2 - 2 imes (750) imes (1200) imes ext{cos}(60°)

Calculating each term:

  • (750)2=562500(750)^2 = 562500
  • (1200)2=1440000(1200)^2 = 1440000
  • extcos(60°)=0.5 ext{cos}(60°) = 0.5

Now substituting these values:

PR2=562500+14400002imes(750)imes(1200)imes0.5PR^2 = 562500 + 1440000 - 2 imes (750) imes (1200) imes 0.5 =562500+1440000900000=1025000= 562500 + 1440000 - 900000 = 1025000

Thus, PR=extsqrt(1025000)approx1012.58extm1050extm.PR = ext{sqrt}(1025000) \\approx 1012.58 ext{ m} \approx 1050 ext{ m}.

Step 2

6.2 The size of ∠S

99%

104 rated

Answer

Using the sine rule to find the size of ∠S: Ssin(S)=QRsin(Q)\frac{S}{\text{sin}(S)} = \frac{QR}{\text{sin}(Q)} This gives us: S=QRsin(S)sin(Q)S = \frac{QR \cdot \text{sin}(S)}{\text{sin}(Q)}

Substituting the values:

  • QR=750mQR = 750 m
  • sin(Q)=sin(60°)=32\text{sin}(Q) = \text{sin}(60°) = \frac{\sqrt{3}}{2}

Equating this gives, S=750sin(120°)sin(60°)S = \frac{750 \cdot \text{sin}(120°)}{\text{sin}(60°)} Calculating this:

  • sin(120°)=32\text{sin}(120°) = \frac{\sqrt{3}}{2}
    So, S=7503232120°S = \frac{750 \cdot \frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} \approx 120°.

Step 3

6.3 The length of PS

96%

101 rated

Answer

To find PS, we again use the sine rule: PSsin(R1)=PRsin(S)\frac{PS}{\text{sin}(R_1)} = \frac{PR}{\text{sin}(S)} Rearranging gives: PS=PRsin(R1)sin(S)PS = \frac{PR \cdot \text{sin}(R_1)}{\text{sin}(S)}

Substituting the known values:

  • PR1050mPR \approx 1050 m
  • sin(R1)=sin(40.5°)\text{sin}(R_1) = \text{sin}(40.5°)
  • sin(S)=sin(120°)\text{sin}(S) = \text{sin}(120°)

Performing the calculations yields: PS1050sin(40.5°)sin(120°)PS \approx \frac{1050 \cdot \text{sin}(40.5°)}{\text{sin}(120°)} This leads to: PS787.41mPS \approx 787.41 m.

Step 4

6.4 The area of ΔQPR

98%

120 rated

Answer

We can use the area formula for a triangle: Area=12QRPRsin(Q)\text{Area} = \frac{1}{2} \cdot QR \cdot PR \cdot \text{sin}(Q) Substituting the values:

  • QR=750mQR = 750 m
  • PR1050mPR \approx 1050 m
  • sin(Q)=sin(60°)\text{sin}(Q) = \text{sin}(60°)

Calculating the area gives: Area=12(750)(1200)sin(60°)\text{Area} = \frac{1}{2} \cdot (750) \cdot (1200) \cdot \text{sin}(60°) 389711.43m2.\approx 389711.43 m^2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;