Photo AI

In the diagram below, P (3 ; m) is a point in a Cartesian plane with OP = \sqrt{13} \beta is an acute angle - NSC Technical Mathematics - Question 3 - 2021 - Paper 2

Question icon

Question 3

In-the-diagram-below,-P-(3-;-m)-is-a-point-in-a-Cartesian-plane-with-OP-=-\sqrt{13}-\beta-is-an-acute-angle-NSC Technical Mathematics-Question 3-2021-Paper 2.png

In the diagram below, P (3 ; m) is a point in a Cartesian plane with OP = \sqrt{13} \beta is an acute angle. Determine, WITHOUT using a calculator, the numerical va... show full transcript

Worked Solution & Example Answer:In the diagram below, P (3 ; m) is a point in a Cartesian plane with OP = \sqrt{13} \beta is an acute angle - NSC Technical Mathematics - Question 3 - 2021 - Paper 2

Step 1

3.1.1 m

96%

114 rated

Answer

To find the value of m, we can use the Pythagorean theorem. In our triangle, we know:

OP2=(3)2+(m)2OP^2 = (3)^2 + (m)^2

Substituting the known value:

(13)2=(3)2+(m)2(\sqrt{13})^2 = (3)^2 + (m)^2

This simplifies to:

13=9+m213 = 9 + m^2

Thus:

m2=139m^2 = 13 - 9 m2=4m^2 = 4

Taking the square root gives us:

m=4=2m = \sqrt{4} = 2

Step 2

3.1.2 sec^2 \beta + tan^2 \beta

99%

104 rated

Answer

Using the identity for secant and tangent:

sec2β=1+tan2βsec^2 \beta = 1 + tan^2 \beta

This means:

sec2β+tan2β=(1+tan2β)+tan2β=1+2tan2βsec^2 \beta + tan^2 \beta = (1 + tan^2 \beta) + tan^2 \beta = 1 + 2tan^2 \beta

Next we substitute the value of tanβtan \beta. Letting tanβ=133tan \beta = \frac{\sqrt{13}}{3}:

tan2β=(133)2=139tan^2 \beta = \left(\frac{\sqrt{13}}{3}\right)^2 = \frac{13}{9}

Therefore:

sec2β+tan2β=1+2139=1+269=99+269=359sec^2 \beta + tan^2 \beta = 1 + 2 \cdot \frac{13}{9} = 1 + \frac{26}{9} = \frac{9}{9} + \frac{26}{9} = \frac{35}{9}

Step 3

3.2.1 The size of \theta

96%

101 rated

Answer

Given that \cos \theta = \frac{1}{2}$, we can use the inverse cosine function:

θ=cos1(12)=60\theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^\circ

Step 4

3.2.2 The size of \alpha

98%

120 rated

Answer

Here, we have \tan \alpha = -1. The reference angle where tangent is -1 is \alpha = 45^\circ$. Since \alpha must be in the second quadrant:

α=18045=135\alpha = 180^\circ - 45^\circ = 135^\circ

Step 5

3.2.3 The value of \cos (\alpha - \theta)

97%

117 rated

Answer

We found earlier that \alpha = 135^\circ and \theta = 60^\circ. Therefore:

αθ=13560=75\alpha - \theta = 135^\circ - 60^\circ = 75^\circ

Now calculating:

cos(75)\cos(75^\circ)

Using the cosine angle subtraction identity:

cos(αθ)=cosαcosθ+sinαsinθ\cos(\alpha - \theta) = \cos \alpha \cos \theta + \sin \alpha \sin \theta

Substituting the values where:

cos(135)=22,sin(135)=22,cos(60)=12,sin(60)=32\cos(135^\circ) = -\frac{\sqrt{2}}{2}, \sin(135^\circ) = \frac{\sqrt{2}}{2}, \cos(60^\circ) = \frac{1}{2}, \sin(60^\circ) = \frac{\sqrt{3}}{2}

Thus, we obtain:

cos(75)=(2212)+(2232)=24+64=2+64\cos(75^\circ) = \left(-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) + \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{-\sqrt{2} + \sqrt{6}}{4}

Step 6

3.3 Solve for x

97%

121 rated

Answer

Starting with the equation:

2tanx+0.924=02 \tan x + 0.924 = 0

Rearranging gives:

tanx=0.9242=0.462\tan x = -\frac{0.924}{2} = -0.462

The general solution for tangent is given as:

x=tan1(0.462)+n180x = \tan^{-1}(-0.462) + n\cdot180^\circ

Identifying the reference angle:

x24x \approx 24^\circ (in quadrant 4)

Thus:

x=18024=156x = 180^\circ - 24^\circ = 156^\circ

And, for the angle in the fourth quadrant:

x360an1(0.462)=36024=335x \approx 360^\circ - | an^{-1}(-0.462)| = 360^\circ - 24^\circ = 335^\circ

Final answers are:

x=156,  335x = 156^\circ, \; 335^\circ

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;