Die diagram hieronder toon sirkel LMNP met KL 'n raaklyn aan die sirkel by L - NSC Technical Mathematics - Question 8 - 2021 - Paper 1
Question 8
Die diagram hieronder toon sirkel LMNP met KL 'n raaklyn aan die sirkel by L.
LN en NPK is regshuil.
$\hat{M} = 27^{\circ}$ en $\hat{M} = 98^{\circ}$.
8.1 Bepaal, ... show full transcript
Worked Solution & Example Answer:Die diagram hieronder toon sirkel LMNP met KL 'n raaklyn aan die sirkel by L - NSC Technical Mathematics - Question 8 - 2021 - Paper 1
Step 1
Bepaal, met redes, of lyn LN 'n middellyn is.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om te bepaal of lyn LN 'n middellyn is, moet ons kyk of die hoeke wat deur lyn LN subtend dieselfde is. Aangesien M^=98∘ nie 90 grade is nie, kan ons bevestig dat LN nie 'n middellyn is nie.
Step 2
Bepaal, met redes, die grootte van:
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Step 3
8.2.1 $\hat{P_2}$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Aangesien P2^ die teenhoek met M^ is, kan ons dit bereken as:
P2^+98∘=180∘
Daarom, P2^=180∘−98∘=82∘.
Step 4
8.2.2 $\hat{P_1}$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Omdat P2^ en P1^ op 'n reglyn is, gebruik ons die feit dat die hoeke op 'n reglyn tot 180 grade optel:
P1^+82∘=180∘
Hierdeur vind ons P1^=180∘−82∘=98∘.
Step 5
8.2.3 $L_1$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Vir L1, wat gelyk is aan N^, en met die kennis dat LN 'n middellyn is en L1=98∘.
Step 6
Bewys, met redes, dat:
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Step 7
8.3.1 $\triangle KLP \parallel \triangle KNL$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die driehoeke △KLP en △KNL is gelyk, omdat K^ gemeen is tussen hul. Ook, L1^ is gelyk aan Ni^ omdat hulle teenoor mekaar is.
Dus, ∠KLP=∠KNL bevestig die parallelisme.
Step 8
8.3.2 $KL^{2} = KN \cdot KP$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Aangesien KL∥KN, gebruik ons die eienskappe van soortgelyke driehoeke. Dit lei tot die gevolgtrekking dat KL2=KN⋅KP.
Step 9
Bepaal vervolgens die lengte van KP indien dit verder gegoed word dat KL= 6 eenhede en KN = 13 eenhede.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Hierdoor substitueer ons die waardes in die voorgaande formule:
KL2=KN⋅KP62=13⋅KP36=13⋅KP
Hierdeur vind ons die waarde van KP:
KP=1336≈2.77 eenhede.
Step 10
Bepaal, met redes, of KLMN 'n koordevierhoek is.
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Omdat L1+M^+K^=180∘ het ons bevestig dat KLMN nie 'n koordevierhoek is nie, want die hoeke tesame moet 360 grade wees.