Bepaal die volgende integrale:
9.1.1 $\, \int x(x^2 + 6x) \, dx$
9.1.2 $\, \int \left( 3 + \frac{1}{x} \right) \, dx$
9.2 Die skets hieronder verteenwoordig die oppervlakte begrens deur die funksie $g$ wat deur $g(x) = 3x^2$ gedefinieer word en die punte waar $x = k$ en $x = 4.$
Bepaal die waarde van $k$ as die begrensde oppervlakte 56 vierkante eenhede is. - NSC Technical Mathematics - Question 9 - 2021 - Paper 1
Question 9
Bepaal die volgende integrale:
9.1.1 $\, \int x(x^2 + 6x) \, dx$
9.1.2 $\, \int \left( 3 + \frac{1}{x} \right) \, dx$
9.2 Die skets hieronder verteenwoordi... show full transcript
Worked Solution & Example Answer:Bepaal die volgende integrale:
9.1.1 $\, \int x(x^2 + 6x) \, dx$
9.1.2 $\, \int \left( 3 + \frac{1}{x} \right) \, dx$
9.2 Die skets hieronder verteenwoordig die oppervlakte begrens deur die funksie $g$ wat deur $g(x) = 3x^2$ gedefinieer word en die punte waar $x = k$ en $x = 4.$
Bepaal die waarde van $k$ as die begrensde oppervlakte 56 vierkante eenhede is. - NSC Technical Mathematics - Question 9 - 2021 - Paper 1
Step 1
$\int x(x^2 + 6x) \, dx$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve this integral, we first simplify the integrand:
x(x2+6x)=x3+6x2
Now we integrate each term separately:
∫(x3+6x2)dx=∫x3dx+∫6x2dx
Calculating the integrals:
=4x4+2x3+C
Step 2
$\int \left( 3 + \frac{1}{x} \right) \, dx$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
For this integral, we can separate the terms:
∫(3+x1)dx=∫3dx+∫x1dx
Calculating the integrals:
=3x+ln∣x∣+C
Step 3
Bepaal die waarde van $k$ as die begrensde oppervlakte 56 vierkante eenhede is.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We find the area A under the curve from x=k to x=4: