Photo AI

Bepaal die volgende integrale: 9.1.1 $\, \int x(x^2 + 6x) \, dx$ 9.1.2 $\, \int \left( 3 + \frac{1}{x} \right) \, dx$ 9.2 Die skets hieronder verteenwoordig die oppervlakte begrens deur die funksie $g$ wat deur $g(x) = 3x^2$ gedefinieer word en die punte waar $x = k$ en $x = 4.$ Bepaal die waarde van $k$ as die begrensde oppervlakte 56 vierkante eenhede is. - NSC Technical Mathematics - Question 9 - 2021 - Paper 1

Question icon

Question 9

Bepaal-die-volgende-integrale:--9.1.1--$\,-\int-x(x^2-+-6x)-\,-dx$----9.1.2--$\,-\int-\left(-3-+-\frac{1}{x}-\right)-\,-dx$----9.2--Die-skets-hieronder-verteenwoordig-die-oppervlakte-begrens-deur-die-funksie-$g$-wat-deur--$g(x)-=-3x^2$--gedefinieer-word-en-die-punte-waar-$x-=-k$-en-$x-=-4.$----Bepaal-die-waarde-van-$k$-as-die-begrensde-oppervlakte-56-vierkante-eenhede-is.-NSC Technical Mathematics-Question 9-2021-Paper 1.png

Bepaal die volgende integrale: 9.1.1 $\, \int x(x^2 + 6x) \, dx$ 9.1.2 $\, \int \left( 3 + \frac{1}{x} \right) \, dx$ 9.2 Die skets hieronder verteenwoordi... show full transcript

Worked Solution & Example Answer:Bepaal die volgende integrale: 9.1.1 $\, \int x(x^2 + 6x) \, dx$ 9.1.2 $\, \int \left( 3 + \frac{1}{x} \right) \, dx$ 9.2 Die skets hieronder verteenwoordig die oppervlakte begrens deur die funksie $g$ wat deur $g(x) = 3x^2$ gedefinieer word en die punte waar $x = k$ en $x = 4.$ Bepaal die waarde van $k$ as die begrensde oppervlakte 56 vierkante eenhede is. - NSC Technical Mathematics - Question 9 - 2021 - Paper 1

Step 1

$\int x(x^2 + 6x) \, dx$

96%

114 rated

Answer

To solve this integral, we first simplify the integrand:

x(x2+6x)=x3+6x2x(x^2 + 6x) = x^3 + 6x^2

Now we integrate each term separately:

(x3+6x2)dx=x3dx+6x2dx\int (x^3 + 6x^2) \, dx = \int x^3 \, dx + \int 6x^2 \, dx

Calculating the integrals:

=x44+2x3+C= \frac{x^4}{4} + 2x^3 + C

Step 2

$\int \left( 3 + \frac{1}{x} \right) \, dx$

99%

104 rated

Answer

For this integral, we can separate the terms:

(3+1x)dx=3dx+1xdx\int \left( 3 + \frac{1}{x} \right) \, dx = \int 3 \, dx + \int \frac{1}{x} \, dx

Calculating the integrals:

=3x+lnx+C= 3x + \ln |x| + C

Step 3

Bepaal die waarde van $k$ as die begrensde oppervlakte 56 vierkante eenhede is.

96%

101 rated

Answer

We find the area AA under the curve from x=kx=k to x=4x=4:

A=k43x2dxA = \int_k^4 3x^2 \, dx

Calculating the integral:

=[x3]k4=(4)3(k)3=64k3= \left[ x^3 \right]_k^4 = (4)^3 - (k)^3 = 64 - k^3

Setting the area equal to 56:

64k3=5664 - k^3 = 56

Solving for kk gives:

k3=8k^3 = 8 k=2k = 2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;