6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$
6.2 Bepaal:
6.2.1 $f'(x)$ indien $f(x) = 3x^3 + rac{
u}{ ext{π}}x$
6.2.2 $y = x^2 (4x - 2x^1)$
Bepaal $rac{dy}{dx}$
6.2.3 $D_{x} igg[ rac{ ext{√}x^4 - 2}{5x^2 + 8} igg]$
6.3 Die gradient van die raaklyn aan die kromme gedefinieer deur $g(x) = 6x^2 + 3x$ by $x = p$ is -21 - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Question 6
![6.1-Bepaal-$f'(x)$-deur-EERSTE-BEGINSELS-te-gebruik-indien-$f(x)-=-5---8x$---6.2-Bepaal:---6.2.1-$f'(x)$-indien-$f(x)-=-3x^3-+--rac{-u}{-ext{π}}x$---6.2.2-$y-=-x^2-(4x---2x^1)$--Bepaal-$-rac{dy}{dx}$--6.2.3-$D_{x}-igg[--rac{-ext{√}x^4---2}{5x^2-+-8}-igg]$--6.3-Die-gradient-van-die-raaklyn-aan-die-kromme-gedefinieer-deur-$g(x)-=-6x^2-+-3x$-by-$x-=-p$-is--21-NSC Technical Mathematics-Question 6-2022-Paper 1.png](https://cdn.simplestudy.cloud/assets/backend/uploads/question/subject_1520_paper_20914_q6_679a5deb.jpg)
6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$
6.2 Bepaal:
6.2.1 $f'(x)$ indien $f(x) = 3x^3 + rac{
u}{ ext{π}}x$
6.2.2 $y = x^2 (... show full transcript
Worked Solution & Example Answer:6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$
6.2 Bepaal:
6.2.1 $f'(x)$ indien $f(x) = 3x^3 + rac{
u}{ ext{π}}x$
6.2.2 $y = x^2 (4x - 2x^1)$
Bepaal $rac{dy}{dx}$
6.2.3 $D_{x} igg[ rac{ ext{√}x^4 - 2}{5x^2 + 8} igg]$
6.3 Die gradient van die raaklyn aan die kromme gedefinieer deur $g(x) = 6x^2 + 3x$ by $x = p$ is -21 - NSC Technical Mathematics - Question 6 - 2022 - Paper 1
Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Om f′(x) te bepaal, gebruik ons die definisie van die afgeleide:
f′(x)=extlimho0hf(x+h)−f(x)
Hierin is:
- f(x)=5−8x
- f(x+h)=5−8(x+h)=5−8x−8h
Dus:
f′(x)=extlimho0h(5−8x−8h)−(5−8x)
=limho0h−8h=−8
Dus, f′(x)=−8.
Bepaal $f'(x)$ indien $f(x) = 3x^3 + rac{ν}{π}x$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
f′(x)=3(3x2)+πν=9x2+πν.
Bepaal $\frac{dy}{dx}$ indien $y = x^2 (4x - 2x^1)$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Eerstens, vereenvoudig die uitdrukking:
Nou, neem die afgeleide:
dxdy=6x2.
Bepaal $D_{x} \bigg[ \frac{\text{√}x^4 - 2}{5x^2 + 8} \bigg]$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Gebruik die quotient rule:
Dx[vu]=v2u′v−uv′, waar u=√x4−2 en v=5x2+8.
Bereken u′:
u′=21x−3/2⋅4x3=2x3/2
Bereken v′:
v′=10x
Dus:
Dx[vu]=(5x2+8)2(2x3/2)(5x2+8)−(√x4−2)(10x)
Bepaal die numeriese waarde van $p$.

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die gradient van die afgeleide is gegee as -21:
g′(x)=12x+3
Kies x=p:
12p+3=−21
12p=−24
p=−2.
Bepaal vervolgens die vergelyking van die raaklyn aan kromme $g$ by $x = p$ in die vorm $y = $.

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Eerstens, vind die y-waarde by p=−2:
g(−2)=6(−2)2+3(−2)=24−6=18.
Nou kan ons die vergelyking van die raaklyn skryf:
- Gebruik die punt-slope vorm:
y−y1=m(x−x1)
waar m=−21 en (x1,y1)=(−2,18):
y−18=−21(x+2)
Herorganiseer om die finale vergelyking te kry:
y=−21x−42+18=−21x−24.
Join the NSC students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;