Photo AI

6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$ 6.2 Bepaal: 6.2.1 $f'(x)$ indien $f(x) = 3x^3 + rac{ u}{ ext{π}}x$ 6.2.2 $y = x^2 (4x - 2x^1)$ Bepaal $ rac{dy}{dx}$ 6.2.3 $D_{x} igg[ rac{ ext{√}x^4 - 2}{5x^2 + 8} igg]$ 6.3 Die gradient van die raaklyn aan die kromme gedefinieer deur $g(x) = 6x^2 + 3x$ by $x = p$ is -21 - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Question icon

Question 6

6.1-Bepaal-$f'(x)$-deur-EERSTE-BEGINSELS-te-gebruik-indien-$f(x)-=-5---8x$---6.2-Bepaal:---6.2.1-$f'(x)$-indien-$f(x)-=-3x^3-+--rac{-u}{-ext{π}}x$---6.2.2-$y-=-x^2-(4x---2x^1)$--Bepaal-$-rac{dy}{dx}$--6.2.3-$D_{x}-igg[--rac{-ext{√}x^4---2}{5x^2-+-8}-igg]$--6.3-Die-gradient-van-die-raaklyn-aan-die-kromme-gedefinieer-deur-$g(x)-=-6x^2-+-3x$-by-$x-=-p$-is--21-NSC Technical Mathematics-Question 6-2022-Paper 1.png

6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$ 6.2 Bepaal: 6.2.1 $f'(x)$ indien $f(x) = 3x^3 + rac{ u}{ ext{π}}x$ 6.2.2 $y = x^2 (... show full transcript

Worked Solution & Example Answer:6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$ 6.2 Bepaal: 6.2.1 $f'(x)$ indien $f(x) = 3x^3 + rac{ u}{ ext{π}}x$ 6.2.2 $y = x^2 (4x - 2x^1)$ Bepaal $ rac{dy}{dx}$ 6.2.3 $D_{x} igg[ rac{ ext{√}x^4 - 2}{5x^2 + 8} igg]$ 6.3 Die gradient van die raaklyn aan die kromme gedefinieer deur $g(x) = 6x^2 + 3x$ by $x = p$ is -21 - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Step 1

Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik indien $f(x) = 5 - 8x$

96%

114 rated

Answer

Om f(x)f'(x) te bepaal, gebruik ons die definisie van die afgeleide:

f(x)=extlimho0f(x+h)f(x)hf'(x) = ext{lim}_{h o 0} \frac{f(x+h) - f(x)}{h}

Hierin is:

  • f(x)=58xf(x) = 5 - 8x
  • f(x+h)=58(x+h)=58x8hf(x+h) = 5 - 8(x+h) = 5 - 8x - 8h

Dus: f(x)=extlimho0(58x8h)(58x)hf'(x) = ext{lim}_{h o 0} \frac{(5 - 8x - 8h) - (5 - 8x)}{h} =limho08hh=8= \text{lim}_{h o 0} \frac{-8h}{h} = -8 Dus, f(x)=8f'(x) = -8.

Step 2

Bepaal $f'(x)$ indien $f(x) = 3x^3 + rac{ν}{π}x$

99%

104 rated

Answer

f(x)=3(3x2)+νπ=9x2+νπf'(x) = 3(3x^2) + \frac{ν}{π} = 9x^2 + \frac{ν}{π}.

Step 3

Bepaal $\frac{dy}{dx}$ indien $y = x^2 (4x - 2x^1)$

96%

101 rated

Answer

Eerstens, vereenvoudig die uitdrukking:

Nou, neem die afgeleide: dydx=6x2.\frac{dy}{dx} = 6x^2.

Step 4

Bepaal $D_{x} \bigg[ \frac{\text{√}x^4 - 2}{5x^2 + 8} \bigg]$

98%

120 rated

Answer

Gebruik die quotient rule: Dx[uv]=uvuvv2D_x \bigg[ \frac{u}{v} \bigg] = \frac{u'v - uv'}{v^2}, waar u=x42u = \text{√}x^4 - 2 en v=5x2+8v = 5x^2 + 8.

Bereken uu': u=12x3/24x3=2x3/2u' = \frac{1}{2}x^{-3/2} \cdot 4x^3 = 2x^{3/2}

Bereken vv': v=10xv' = 10x

Dus: Dx[uv]=(2x3/2)(5x2+8)(x42)(10x)(5x2+8)2D_x \bigg[ \frac{u}{v} \bigg] = \frac{(2x^{3/2})(5x^2 + 8) - (\text{√}x^4 - 2)(10x)}{(5x^2 + 8)^2}

Step 5

Bepaal die numeriese waarde van $p$.

97%

117 rated

Answer

Die gradient van die afgeleide is gegee as -21:

g(x)=12x+3g'(x) = 12x + 3

Kies x=px = p: 12p+3=2112p + 3 = -21 12p=2412p = -24 p=2.p = -2.

Step 6

Bepaal vervolgens die vergelyking van die raaklyn aan kromme $g$ by $x = p$ in die vorm $y = $.

97%

121 rated

Answer

Eerstens, vind die yy-waarde by p=2p = -2: g(2)=6(2)2+3(2)=246=18.g(-2) = 6(-2)^2 + 3(-2) = 24 - 6 = 18.

Nou kan ons die vergelyking van die raaklyn skryf:

  • Gebruik die punt-slope vorm: yy1=m(xx1)y - y_1 = m(x - x_1) waar m=21m = -21 en (x1,y1)=(2,18)(x_1, y_1) = (-2, 18): y18=21(x+2)y - 18 = -21(x + 2)

Herorganiseer om die finale vergelyking te kry: y=21x42+18=21x24.y = -21x - 42 + 18 = -21x - 24.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;