Photo AI

Bepaal die volgende integrale: 9.1.1 $$\int \left(-\frac{6}{x}\right)dx$$ 9.1.2 $$\int (x-1)^{2}dx$$ 9.2 Die skets hieronder verteenwoordig die begrensde oppervlakklate van die kromme van die funksie wat deur $$f(x) = x^{3} + 3$$ gedefinieer word - NSC Technical Mathematics - Question 9 - 2018 - Paper 1

Question icon

Question 9

Bepaal-die-volgende-integrale:--9.1.1-$$\int-\left(-\frac{6}{x}\right)dx$$--9.1.2-$$\int-(x-1)^{2}dx$$--9.2-Die-skets-hieronder-verteenwoordig-die-begrensde-oppervlakklate-van-die-kromme-van-die-funksie-wat-deur-$$f(x)-=-x^{3}-+-3$$-gedefinieer-word-NSC Technical Mathematics-Question 9-2018-Paper 1.png

Bepaal die volgende integrale: 9.1.1 $$\int \left(-\frac{6}{x}\right)dx$$ 9.1.2 $$\int (x-1)^{2}dx$$ 9.2 Die skets hieronder verteenwoordig die begrensde oppervla... show full transcript

Worked Solution & Example Answer:Bepaal die volgende integrale: 9.1.1 $$\int \left(-\frac{6}{x}\right)dx$$ 9.1.2 $$\int (x-1)^{2}dx$$ 9.2 Die skets hieronder verteenwoordig die begrensde oppervlakklate van die kromme van die funksie wat deur $$f(x) = x^{3} + 3$$ gedefinieer word - NSC Technical Mathematics - Question 9 - 2018 - Paper 1

Step 1

9.1.1 $$\int \left(-\frac{6}{x}\right) dx$$

96%

114 rated

Answer

To solve the integral, we recognize that it can be expressed as:

61xdx-6 \int \frac{1}{x} dx

The integral of 1x\frac{1}{x} is lnx\ln |x|, thus:

6lnx+C-6 \ln |x| + C

Therefore, the final answer is:

6lnx+C-6 \ln |x| + C

Step 2

9.1.2 $$\int (x-1)^{2} dx$$

99%

104 rated

Answer

First, we expand the integrand:

(x1)2=x22x+1(x-1)^{2} = x^{2} - 2x + 1

Now we can integrate each term separately:

(x22x+1)dx=x33x2+x+C\int (x^{2} - 2x + 1) dx = \frac{x^{3}}{3} - x^{2} + x + C

Thus, the final answer is:

x33x2+x+C\frac{x^{3}}{3} - x^{2} + x + C

Step 3

9.2 Bepaal die geareaserde oppervlakate

96%

101 rated

Answer

To find the bounded area under the curve f(x)=x3+3f(x) = x^{3} + 3 in the interval from x=2x = -2 to x=1x = 1, we compute the definite integral:

A=21(x3+3)dxA = \int_{-2}^{1} (x^{3} + 3) dx

Calculating the integral:

(x3+3)dx=x44+3x\int (x^{3} + 3) dx = \frac{x^{4}}{4} + 3x

We evaluate this from x=2x = -2 to x=1x = 1:

A=(x44+3x)21=(144+3(1))((2)44+3(2))A = \left. \left( \frac{x^{4}}{4} + 3x \right) \right|_{-2}^{1} = \left( \frac{1^{4}}{4} + 3(1) \right) - \left( \frac{(-2)^{4}}{4} + 3(-2) \right)

Calculating further, we find:

A=(14+3)(1646)=(14+3)(46)=(14+3)+2A = \left( \frac{1}{4} + 3 \right) - \left( \frac{16}{4} - 6 \right) = \left( \frac{1}{4} + 3 \right) - \left( 4 - 6 \right) = \left( \frac{1}{4} + 3 \right) + 2

Finally, simplifying yields:

A=14+5=214A = \frac{1}{4} + 5 = \frac{21}{4}

Therefore, the bounded area is:

214\frac{21}{4}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;