Photo AI

6.1 Determine f'(x) using FIRST PRINCIPLES if f(x) = 5 - \frac{1}{2} x 6.2 Determine the following: 6.2.1 f'(x) if f(x) = a^3 - 0.5x^{-1} 6.2.2 D_x \left[ x \left( \sqrt{x+2} \right) \right] 6.3 Given: xy + 2x^3y = 7x^6 6.3.1 Make y the subject of the equation - NSC Technical Mathematics - Question 6 - 2019 - Paper 1

Question icon

Question 6

6.1-Determine-f'(x)-using-FIRST-PRINCIPLES-if-f(x)-=-5---\frac{1}{2}-x--6.2-Determine-the-following:--6.2.1-f'(x)-if-f(x)-=-a^3---0.5x^{-1}--6.2.2-D_x-\left[-x-\left(-\sqrt{x+2}-\right)-\right]--6.3-Given:-xy-+-2x^3y-=-7x^6--6.3.1-Make-y-the-subject-of-the-equation-NSC Technical Mathematics-Question 6-2019-Paper 1.png

6.1 Determine f'(x) using FIRST PRINCIPLES if f(x) = 5 - \frac{1}{2} x 6.2 Determine the following: 6.2.1 f'(x) if f(x) = a^3 - 0.5x^{-1} 6.2.2 D_x \left[ x \left... show full transcript

Worked Solution & Example Answer:6.1 Determine f'(x) using FIRST PRINCIPLES if f(x) = 5 - \frac{1}{2} x 6.2 Determine the following: 6.2.1 f'(x) if f(x) = a^3 - 0.5x^{-1} 6.2.2 D_x \left[ x \left( \sqrt{x+2} \right) \right] 6.3 Given: xy + 2x^3y = 7x^6 6.3.1 Make y the subject of the equation - NSC Technical Mathematics - Question 6 - 2019 - Paper 1

Step 1

Determine f'(x) using FIRST PRINCIPLES if f(x) = 5 - \frac{1}{2} x

96%

114 rated

Answer

To find the derivative using first principles, we apply the limit definition of a derivative:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Substituting the function: f(x)=limh0(512(x+h))(512x)hf'(x) = \lim_{h \to 0} \frac{\left(5 - \frac{1}{2} (x+h)\right) - \left(5 - \frac{1}{2} x\right)}{h}

Simplifying gives: f(x)=limh012hh=12f'(x) = \lim_{h \to 0} \frac{-\frac{1}{2} h}{h} = -\frac{1}{2} Thus, f(x)=12f'(x) = -\frac{1}{2}.

Step 2

f'(x) if f(x) = a^3 - 0.5x^{-1}

99%

104 rated

Answer

Differentiating the function, we find: f(x)=0(0.5)x2=0.5x2f'(x) = 0 - (-0.5)x^{-2} = 0.5x^{-2} So, f(x)=0.5x2f'(x) = \frac{0.5}{x^2}.

Step 3

D_x \left[ x \left( \sqrt{x+2} \right) \right]

96%

101 rated

Answer

To differentiate the function, we use the product rule: If u=xu = x and v=x+2v = \sqrt{x+2}, then: Dx[uv]=uv+uvD_x [uv] = u'v + uv' Calculating u=1u' = 1 and $v' = \frac{1}{2}(x+2)^{-1/2}Thus:Thus:D_x \left[ x \left( \sqrt{x+2} \right) \right] = 1 \cdot \sqrt{x+2} + x \cdot \left(\frac{1}{2}(x+2)^{-1/2}\right)Simplifying:Simplifying:D_x \left[ x \left( \sqrt{x+2} \right) \right] = \sqrt{x+2} + \frac{x}{2\sqrt{x+2}} = \frac{2(x+2) + x}{2\sqrt{x+2}} = \frac{3x + 4}{2\sqrt{x+2}}$$

Step 4

Make y the subject of the equation.

98%

120 rated

Answer

Starting with the equation: xy+2x3y=7x6xy + 2x^3y = 7x^6 Factoring out yy provides: y(x+2x3)=7x6y(x + 2x^3) = 7x^6 Isolating yy gives us: y=7x6x+2x3y = \frac{7x^6}{x + 2x^3}

Step 5

Hence, determine \frac{dy}{dx}.

97%

117 rated

Answer

Using the quotient rule for differentiation: dydx=(7x6)x+2x37x6(x+2x3)(x+2x3)2\frac{dy}{dx} = \frac{(7x^6)'}{x + 2x^3} - \frac{7x^6 (x + 2x^3)'}{(x + 2x^3)^2} Calculating: (7x6)=42x5(7x^6)' = 42x^5 (x+2x3)=1+6x2(x + 2x^3)' = 1 + 6x^2 Combining gives: dydx=42x5(x+2x3)7x6(1+6x2)(x+2x3)2\frac{dy}{dx} = \frac{42x^5 (x + 2x^3) - 7x^6 (1 + 6x^2)}{(x + 2x^3)^2}

Step 6

The daily profit if 300 light bulbs are produced in one day.

97%

121 rated

Answer

Substituting x=300x = 300 into the profit function: P(300)=0.8(300)2200(300)=0.8(90000)60000=7200060000=12000 randsP(300) = 0.8(300)^2 - 200(300) = 0.8(90000) - 60000 = 72000 - 60000 = 12000\text{ rands}

Step 7

The number of light bulbs produced that will yield a zero daily profit.

96%

114 rated

Answer

Setting the profit equation to zero: 0=0.8x2200x0 = 0.8x^2 - 200x Factoring out xx gives: x(0.8x200)=0x(0.8x - 200) = 0 This yields two solutions: x=0 or x=2000.8=250x = 0 \text{ or } x = \frac{200}{0.8} = 250 Thus, 250 light bulbs will yield zero profit.

Step 8

The rate of change of the daily profit with respect to the number of light bulbs produced, if 200 light bulbs are produced.

99%

104 rated

Answer

To find the derivative of the profit function: P(x)=(0.8x2200x)=1.6x200P'(x) = (0.8x^2 - 200x)' = 1.6x - 200 Substituting x=200x = 200 results in: P(200)=1.6(200)200=320200=120 bulbs per dayP'(200) = 1.6(200) - 200 = 320 - 200 = 120\text{ bulbs per day}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;