Photo AI

Determine the following integrals: 9.1.1 ∫ −4 dt 9.1.2 ∫ x^5 (x^3 − 9x^2) dx 9.2 The diagram below shows function f defined by f(x) = -x^2 + 2x + 3 The graph of f cuts the x-axis at A(-1; 0) and B(3; 0) and the y-axis at point C(0; 3) - NSC Technical Mathematics - Question 9 - 2023 - Paper 1

Question icon

Question 9

Determine-the-following-integrals:--9.1.1--∫-−4-dt----9.1.2--∫-x^5-(x^3-−-9x^2)-dx--9.2-The-diagram-below-shows-function--f-defined-by--f(x)-=--x^2-+-2x-+-3---The-graph-of--f--cuts-the-x-axis-at--A(-1;-0)-and--B(3;-0)-and-the-y-axis-at-point--C(0;-3)-NSC Technical Mathematics-Question 9-2023-Paper 1.png

Determine the following integrals: 9.1.1 ∫ −4 dt 9.1.2 ∫ x^5 (x^3 − 9x^2) dx 9.2 The diagram below shows function f defined by f(x) = -x^2 + 2x + 3 The gr... show full transcript

Worked Solution & Example Answer:Determine the following integrals: 9.1.1 ∫ −4 dt 9.1.2 ∫ x^5 (x^3 − 9x^2) dx 9.2 The diagram below shows function f defined by f(x) = -x^2 + 2x + 3 The graph of f cuts the x-axis at A(-1; 0) and B(3; 0) and the y-axis at point C(0; 3) - NSC Technical Mathematics - Question 9 - 2023 - Paper 1

Step 1

9.1.1 ∫ −4 dt

96%

114 rated

Answer

To determine the integral, we apply the basic integral rule:

4dt=4t+C∫ -4 dt = -4t + C

where C is the constant of integration.

Step 2

9.1.2 ∫ x^5 (x^3 − 9x^2) dx

99%

104 rated

Answer

First, simplify the integrand:

x5(x39x2)dx=(x89x7)dx.∫ x^5 (x^3 - 9x^2) dx = ∫ (x^8 - 9x^7) dx.

Now calculate the integral term by term:

= rac{x^9}{9} - rac{9x^8}{8} + C

Hence, the result of the integral is

rac{x^9}{9} - rac{9x^8}{8} + C.

Step 3

9.2 Determine the total shaded area represented in the diagram above.

96%

101 rated

Answer

To find the total shaded area bounded by the curve and the x-axis, we calculate:

  1. Area AOB:

A_{AOB} = ∫_{-1}^{3} (-x^2 + 2x + 3) dx

Stepbystep:Evaluatetheindefiniteintegral: Step by step: - Evaluate the indefinite integral:

rac{x^3}{3} + x^2 + 3x

Calculatefrom1to3: - Calculate from -1 to 3:

A_{AOB} = [ rac{3^3}{3} + 3^2 + 9] - [ rac{(-1)^3}{3} + (-1)^2 + 3(-1)]

Simplifyingresultsin: Simplifying results in:

= rac{9 + 9 + 9}{1} + rac{1}{3} + 1 - 3 = 10.67 ext{ units}^2.

2.AreaofthetriangleCEF(withverticesatpointsC,E,E):ForE(2;0)andC(0;3):Base=2andHeight=3.2. **Area of the triangle CEF** (with vertices at points C, E, E): For E(2; 0) and C(0; 3): Base = 2 and Height = 3.

A_{CEF} = rac{1}{2} imes base imes height = rac{1}{2} imes 2 imes 3 = 3 ext{ units}^2.

3.Totalshadedarea:3. **Total shaded area**:

A_{Total} = A_{AOB} + A_{CEF} = 10.67 + 3 = 13.67 ext{ units}^2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;