Photo AI
Question 9
9.1 Determine the following: 9.1.1 \( \int 2x \: dx \) 9.1.2 \( \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) \: dx \) 9.2 The sketch below represents func... show full transcript
Step 1
Step 2
Answer
This integral can be evaluated term by term:
[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) : dx = \int x^{1/2} , dx + \int 7x^{-1} , dx + \int 4x^{-2} , dx ]
Evaluating each integral:
Combining these results:
[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) : dx = \frac{2x^{3/2}}{3} + 7 \ln |x| - \frac{4}{x} + C ]
Step 3
Answer
First, compute the area above the x-axis from ( x = 2 ) to ( x = 3 ):
[ \int_{2}^{3} (-x^2 + 6) , dx = \left[ -\frac{x^3}{3} + 6x \right]_{2}^{3} ]
Calculating the definite integral:
[ = \left( -\frac{27}{3} + 18 \right) - \left( -\frac{8}{3} + 12 \right) = -9 + 18 + \frac{8}{3} - 12 = 6 - 9 + \frac{8}{3} = \frac{8}{3} \text{ square units} ]
The total unshaded area:
[ \text{Unshaded Area} = \frac{8}{3} \text{ square units} ]
Given the shaded area is ( \frac{34}{3} ) square units, therefore:
[ \frac{8}{3} < \frac{34}{3} \text{ hence, the unshaded area is less than the shaded area.} ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered