Photo AI

6.1 Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 5 + x$ - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Question icon

Question 6

6.1-Determine-$f'(x)$-using-FIRST-PRINCIPLES-if-$f(x)-=-5-+-x$-NSC Technical Mathematics-Question 6-2022-Paper 1.png

6.1 Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 5 + x$. 6.2 Determine: 6.2.1 $\frac{dy}{dx}$ if $y = x (x + 9)$. 6.2.2 $D_x[\sqrt{x + \pi p^3}]$. 6.2.3 $... show full transcript

Worked Solution & Example Answer:6.1 Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 5 + x$ - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Step 1

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 5 + x$.

96%

114 rated

Answer

To find the derivative using first principles, we use the definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Substituting f(x)=5+xf(x) = 5 + x:

f(x)=limh0(5+(x+h))(5+x)h=limh0hh=1f'(x) = \lim_{h \to 0} \frac{(5 + (x + h)) - (5 + x)}{h} = \lim_{h \to 0} \frac{h}{h} = 1

Thus, f(x)=1f'(x) = 1.

Step 2

$\frac{dy}{dx}$ if $y = x (x + 9)$.

99%

104 rated

Answer

To differentiate y=x(x+9)y = x(x + 9), we first expand the expression:

y=x2+9xy = x^2 + 9x

Now, differentiate:

dydx=2x+9\frac{dy}{dx} = 2x + 9

Step 3

$D_x[\sqrt{x + \pi p^3}]$.

96%

101 rated

Answer

To differentiate x+πp3\sqrt{x + \pi p^3}, we apply the chain rule:

Dx[x+πp3]=12x+πp3ddx(x+πp3)=12x+πp3D_x[\sqrt{x + \pi p^3}] = \frac{1}{2\sqrt{x + \pi p^3}} \cdot \frac{d}{dx}(x + \pi p^3) = \frac{1}{2\sqrt{x + \pi p^3}}

Step 4

$f'(x)$ if $f(x) = \frac{1 - x^9}{x^2}$.

98%

120 rated

Answer

To differentiate f(x)f(x), we apply the quotient rule:

Let u=1x9u = 1 - x^9 and v=x2v = x^2:

f(x)=uvuvv2f'(x) = \frac{u'v - uv'}{v^2}

Calculating u=9x8u' = -9x^8 and v=2xv' = 2x:

f(x)=(9x8)(x2)(1x9)(2x)x4f'(x) = \frac{(-9x^8)(x^2) - (1 - x^9)(2x)}{x^4}

Simplifying:

f(x)=9x102x+2x10x4=7x102xx4=7x62x3f'(x) = \frac{-9x^{10} - 2x + 2x^{10}}{x^4} = \frac{-7x^{10} - 2x}{x^4} = -7x^6 - \frac{2}{x^3}

Step 5

Determine $g(2)$.

97%

117 rated

Answer

To evaluate g(2)g(2) where g(x)=4x2g(x) = -4x^2:

g(2)=4(22)=4(4)=16g(2) = -4(2^2) = -4(4) = -16

Step 6

The equation of the tangent to $g$ at a point where $x = 2$.

97%

121 rated

Answer

First, we find the derivative of g(x)g(x):

g(x)=8xg'(x) = -8x

Evaluating at x=2x = 2:

g(2)=8(2)=16g'(2) = -8(2) = -16

Now, we use the point-slope form to write the equation of the tangent line:

Let the point be (2,g(2))=(2,16)(2, g(2)) = (2, -16):

y(16)=16(x2)y - (-16) = -16(x - 2)

This simplifies to:

y=16x+1616=16x+0y = -16x + 16 - 16 = -16x + 0

Thus, the equation of the tangent line is:

y=16xy = -16x

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;