Photo AI

Determine the following integrals: 9.1.1 \( \int m x^p \, dx \) where \( p \neq -1 \) 9.1.2 \( \int \frac{x^3 + x^2 - 2}{x^2 - 1} \, dx \) 9.2 The sketch below shows the shaded bounded area of the curve of the function defined by \( g(x) = \frac{4}{x}, \) where \( x > 0 - NSC Technical Mathematics - Question 9 - 2019 - Paper 1

Question icon

Question 9

Determine-the-following-integrals:--9.1.1--\(-\int-m-x^p-\,-dx-\)-where-\(-p-\neq--1-\)--9.1.2--\(-\int-\frac{x^3-+-x^2---2}{x^2---1}-\,-dx-\)--9.2--The-sketch-below-shows-the-shaded-bounded-area-of-the-curve-of-the-function-defined-by--\(-g(x)-=-\frac{4}{x},-\)-where-\(-x->-0-NSC Technical Mathematics-Question 9-2019-Paper 1.png

Determine the following integrals: 9.1.1 \( \int m x^p \, dx \) where \( p \neq -1 \) 9.1.2 \( \int \frac{x^3 + x^2 - 2}{x^2 - 1} \, dx \) 9.2 The sketch below... show full transcript

Worked Solution & Example Answer:Determine the following integrals: 9.1.1 \( \int m x^p \, dx \) where \( p \neq -1 \) 9.1.2 \( \int \frac{x^3 + x^2 - 2}{x^2 - 1} \, dx \) 9.2 The sketch below shows the shaded bounded area of the curve of the function defined by \( g(x) = \frac{4}{x}, \) where \( x > 0 - NSC Technical Mathematics - Question 9 - 2019 - Paper 1

Step 1

9.1.1 \( \int m x^p \, dx \)

96%

114 rated

Answer

To integrate ( \int m x^p , dx ), we apply the power rule for integration:

mxpdx=mxp+1p+1+C,where p1.\int m x^p \, dx = m \cdot \frac{x^{p+1}}{p+1} + C, \quad \text{where } p \neq -1.

Thus, the result can be expressed as:

=mxp+1p+1+C.= \frac{m x^{p+1}}{p+1} + C.

Step 2

9.1.2 \( \int \frac{x^3 + x^2 - 2}{x^2 - 1} \, dx \)

99%

104 rated

Answer

For the integral, we will perform polynomial long division:

  1. Polynomial Long Division: Divide ( x^3 + x^2 - 2 ) by ( x^2 - 1 ):
=x+1+1x21.= x + 1 + \frac{-1}{x^2 - 1}.
  1. Integration: Now we can integrate each term:
(x+1)dx1x21dx.\int (x + 1) \, dx - \int \frac{1}{x^2 - 1} \, dx.
  • For ( \int (x + 1) , dx ), the result is:
=x22+x+C1.= \frac{x^2}{2} + x + C_1.
  • For ( \int \frac{1}{x^2 - 1} , dx ), we can use partial fraction decomposition:
1x21=1/2x11/2x+1.\frac{1}{x^2-1} = \frac{1/2}{x-1} - \frac{1/2}{x+1}.

This results in:

=12lnx112lnx+1+C2.= \frac{1}{2} \ln |x-1| - \frac{1}{2} \ln |x+1| + C_2.

Thus, combining everything gives:

=x22+x12lnx21+C.= \frac{x^2}{2} + x - \frac{1}{2} \ln |x^2 - 1| + C.

Step 3

9.2 Determine (showing ALL calculations) the shaded area bounded by the curve and the x-axis between the points where \( x = 1, 4 \) and \( x = 3.5 \).

96%

101 rated

Answer

To find the shaded area, we need to evaluate the definite integral:

A=13.54xdx.A = \int_{1}^{3.5} \frac{4}{x} \, dx.
  1. Integration:
=413.51xdx=4[lnx]13.5.= 4 \int_{1}^{3.5} \frac{1}{x} \, dx = 4 [\ln |x|]_{1}^{3.5}.
  1. Evaluating the bounds:
=4[ln(3.5)ln(1)]=4ln(3.5).= 4 [\ln(3.5) - \ln(1)] = 4 \ln(3.5).
  1. Calculate the area:

Using calculator:

A41.252765.0110 square units.A \approx 4 \cdot 1.25276 \approx 5.0110 \text{ square units}.

Thus, the shaded area is approximately:

A5.0110 square units.A \approx 5.0110 \text{ square units}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;