6.1 Gegee: f(x) = x - 5
Bepaal f'(x) deur EERSTE BEGINSELS te gebruik - NSC Technical Mathematics - Question 6 - 2023 - Paper 1
Question 6
6.1 Gegee: f(x) = x - 5
Bepaal f'(x) deur EERSTE BEGINSELS te gebruik.
6.2 Bepaal:
6.2.1 D_f[-3x^3 - 7x]
6.2.2 f'(x) indien f(x) = \frac{3}{2x} + \sqrt{x^... show full transcript
Worked Solution & Example Answer:6.1 Gegee: f(x) = x - 5
Bepaal f'(x) deur EERSTE BEGINSELS te gebruik - NSC Technical Mathematics - Question 6 - 2023 - Paper 1
Step 1
Bepaal f'(x) deur EERSTE BEGINSELS te gebruik.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om die afgeleide van f(x) = x - 5 te vind, gebruik ons die definisie van die afgeleide:
f′(x)=limh→0hf(x+h)−f(x)
Bereken f(x + h):
f(x+h)=(x+h)−5=x+h−5
Vind die verskil f(x+h)−f(x):
f(x+h)−f(x)=(x+h−5)−(x−5)=h
Plaas dit in die limiet:
f′(x)=limh→0hh=1
Dus, f′(x)=1.
Step 2
Bepaal: D_f[-3x^3 - 7x]
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Sign up now to view full answer, or log in if you already have an account!
Answer
Om f'(x) te vind, begin met die gegewe funksie f(x):
f(x)=2x3+x
Bereken die afgeleide:
f′(x)=−2x23+1
Step 4
Bepaal \frac{dy}{dt} indien y^2 = 64t^1
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Hier gebruik ons die kettingreël. Begin met die gegewe vergelyking:
y2=64t
Neem die afgeleide van beide kante:
2ydtdy=64
Los vir \frac{dy}{dt} op:
dtdy=y32
As y = \sqrt{64t},dandtdy=12t.
Step 5
Bereken h(1).
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om h(1) te bereken:
h(1)=−2(1)2+(1)−5=−6
Step 6
Bepaal vervolgens die gemiddelde gradient van h tussen die punte (1; h(1)) en (-3; -26).
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die gemiddelde gradient tussen twee punte (x_1, y_1) en (x_2, y_2) is gegee deur:
m=x2−x1y2−y1
Hier is (1, h(1)) en (-3, -26):
m=−3−1−26−(−6)=−4−20=5
Step 7
Bepaal die vergelyking van die raaklyn aan die kromme gedefinieer deur f(x) = x^3 + 2 by x = 4.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Bereken f'(x):
f′(x)=3x2
Dus, f′(4)=3(42)=48.
Bereken die koordinaat van die punt:
p=(4,f(4))=(4,43+2)=(4,66)
Gebruik die punt-slope vorm van die lyn se vergelyking:
y−y1=m(x−x1)
Waar m die gradient is, en (x_1, y_1) die punt is.
y−66=48(x−4)
Dit lei tot die vergelyking:
y=48x−126