Bepaal die volgende integral:
9.1.1 ∫ 3/x dx
9.1.2 ∫ (3x/x^5 + √x^3) dx
9.2 Die skets hieronder toon funksie f gedefinieer deur f(x)=x²−5x
Die twee geaserde oppervlaktes wat voorgestel word, is:
• A₁ = oppervlakte begrens deur funksie f, die x-as en die ordinates x=0 en x=3
• A₂ = oppervlakte begrens deur funksie f, die x-as en die ordinates x=5 en x=7
Bepaal (toon ALLE berekeninge) met hoeveel A₁ groter as A₂ is. - NSC Technical Mathematics - Question 9 - 2023 - Paper 1
Question 9
Bepaal die volgende integral:
9.1.1 ∫ 3/x dx
9.1.2 ∫ (3x/x^5 + √x^3) dx
9.2 Die skets hieronder toon funksie f gedefinieer deur f(x)=x²−5x
Die twee ... show full transcript
Worked Solution & Example Answer:Bepaal die volgende integral:
9.1.1 ∫ 3/x dx
9.1.2 ∫ (3x/x^5 + √x^3) dx
9.2 Die skets hieronder toon funksie f gedefinieer deur f(x)=x²−5x
Die twee geaserde oppervlaktes wat voorgestel word, is:
• A₁ = oppervlakte begrens deur funksie f, die x-as en die ordinates x=0 en x=3
• A₂ = oppervlakte begrens deur funksie f, die x-as en die ordinates x=5 en x=7
Bepaal (toon ALLE berekeninge) met hoeveel A₁ groter as A₂ is. - NSC Technical Mathematics - Question 9 - 2023 - Paper 1
Step 1
9.1.1 ∫ 3/x dx
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the integral, we recognize that it can be expressed as:
∫3/xdx=3∫1/xdx=3ln∣x∣+C
This gives us the answer: 3ln|x| + C.
Step 2
9.1.2 ∫ (3x/x^5 + √x^3) dx
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, simplify the integrand:
rac{3x}{x^5} + \sqrt{x^3} = 3 x^{-4} + x^{3/2}
Then, we integrate each term separately:
∫(3x−4)dx=−33x−3=−x−3
and
∫x3/2dx=52x5/2
Thus,
∫(3x/x5+√x3)dx=−x−3+52x5/2+C
Step 3
A₁ = ∫ (x² - 5x) dx from x=0 to x=3
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find A₁, we calculate:
A1=−∫(x2−5x)dx=−[3x3−25x2]03
Calculating at the bounds:
=−[3(3)3−25(3)2]−0=−[9−22.5]=13.5units2
Step 4
A₂ = ∫ (x² - 5x) dx from x=5 to x=7
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Now, we calculate A₂:
A2=−∫(x2−5x)dx=−[3x3−25x2]57
Plugging in the bounds:
=−[(3(7)3−25(7)2)−(3(5)3−25(5)2)]
Calculating,
=−[3343−25(49)−3125+25(25)]
This results in A₂ being 12.67 units².
Step 5
Vergelyk A₁ en A₂
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!