Photo AI

Bepaal die volgende: 9.1.1 \[ \int 2x \; dx \] 9.1.2 \[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) dx \] 9.2 Die skets hieronder verteenwoordig funksie \( f \) wat deur \( f(x) = -x^2 - x + 6 \) gedefinieer word, met \( x \)-asfinte by \( (-3; 0) \) en \( (2; 0) \) - NSC Technical Mathematics - Question 9 - 2020 - Paper 1

Question icon

Question 9

Bepaal-die-volgende:--9.1.1---\[-\int-2x-\;-dx-\]----9.1.2---\[-\int-\left(-\sqrt{x}-+-\frac{7}{x}-+-4x^{-2}-\right)-dx-\]----9.2---Die-skets-hieronder-verteenwoordig-funksie-\(-f-\)-wat-deur---\(-f(x)-=--x^2---x-+-6-\)---gedefinieer-word,-met-\(-x-\)-asfinte-by-\(-(-3;-0)-\)-en-\(-(2;-0)-\)-NSC Technical Mathematics-Question 9-2020-Paper 1.png

Bepaal die volgende: 9.1.1 \[ \int 2x \; dx \] 9.1.2 \[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) dx \] 9.2 Die skets hieronder verteenwoordi... show full transcript

Worked Solution & Example Answer:Bepaal die volgende: 9.1.1 \[ \int 2x \; dx \] 9.1.2 \[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) dx \] 9.2 Die skets hieronder verteenwoordig funksie \( f \) wat deur \( f(x) = -x^2 - x + 6 \) gedefinieer word, met \( x \)-asfinte by \( (-3; 0) \) en \( (2; 0) \) - NSC Technical Mathematics - Question 9 - 2020 - Paper 1

Step 1

9.1.1 \[ \int 2x \; dx \]

96%

114 rated

Answer

To evaluate the integral ( \int 2x , dx ), we apply the power rule for integration:

[ \int 2x , dx = 2 \cdot \frac{x^2}{2} + C = x^2 + C ]

Thus, the answer is ( x^2 + C ).

Step 2

9.1.2 \[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) dx \]

99%

104 rated

Answer

This integral can be split up and handled term by term:

[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) dx = \int x^{1/2} , dx + \int 7x^{-1} , dx + \int 4x^{-2} , dx ]

Calculating each term:

  1. ( \int x^{1/2} , dx = \frac{x^{3/2}}{3/2} = \frac{2}{3}x^{3/2} )
  2. ( \int 7x^{-1} , dx = 7 \ln|x| )
  3. ( \int 4x^{-2} , dx = 4 \cdot \left( -\frac{1}{x} \right) = -\frac{4}{x} )

Combining these, we have:

[ \int \left( \sqrt{x} + \frac{7}{x} + 4x^{-2} \right) dx = \frac{2}{3}x^{3/2} + 7 \ln|x| - \frac{4}{x} + C ]

Step 3

9.2 Bepaal die ongearsedeerde oppervlakte, begrens deur die kromme en die \( x \)-as tussen die punte \( x = -3 \) en \( 2 \)

96%

101 rated

Answer

To find the unshaded area bounded by the curve and the x-axis, we first compute the definite integral of the function from ( x = -3 ) to ( x = 2 ):

[ \int_{-3}^{2} (-x^2 - x + 6) , dx ]

Calculating this integral:

  1. Find the antiderivative: [ \int (-x^2 - x + 6) , dx = -\frac{x^3}{3} - \frac{x^2}{2} + 6x + C ]

  2. Evaluate from -3 to 2: [ \left[ -\frac{(2)^3}{3} - \frac{(2)^2}{2} + 6(2) \right] - \left[ -\frac{(-3)^3}{3} - \frac{(-3)^2}{2} + 6(-3) \right] ] [ = \left[ -\frac{8}{3} - 2 + 12 \right] - \left[ 9 - \frac{9}{2} - 18 \right] ] Simplifying this gives: [ = \left[ \frac{28}{3} \right] - \left[ -\frac{27}{2} \right] ] The total area is to be computed considering the unshaded area is less than the shaded area.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;