Photo AI

Bepaal die volgende integrale: 1 - NSC Technical Mathematics - Question 9 - 2023 - Paper 1

Question icon

Question 9

Bepaal-die-volgende-integrale:--1-NSC Technical Mathematics-Question 9-2023-Paper 1.png

Bepaal die volgende integrale: 1. $\, \int ( - 4 ) dt$ 2. $\, \int x^3 ( x^2 - 9 - x^6 ) dx$ Die diagram hieronder toon funksie $f$ gedefinieer deur $f(x) = -x^2 +... show full transcript

Worked Solution & Example Answer:Bepaal die volgende integrale: 1 - NSC Technical Mathematics - Question 9 - 2023 - Paper 1

Step 1

9.1.1 $\int ( - 4 ) dt$

96%

114 rated

Answer

To evaluate the integral, we use the formula for the integral of a constant:

kdx=kx+C\int k \, dx = kx + C

Thus, we have:

(4)dt=4t+C\int ( - 4 ) dt = -4t + C

Step 2

9.1.2 $\int x^3 ( x^2 - 9 - x^6 ) dx$

99%

104 rated

Answer

First, simplify the integrand:

x3(x29x6)=x59x3x9x^3 ( x^2 - 9 - x^6 ) = x^5 - 9x^3 - x^9

Now, we can integrate each term separately:

(x59x3x9)dx=x669x44x1010+C\int (x^5 - 9x^3 - x^9) dx = \frac{x^6}{6} - 9 \frac{x^4}{4} - \frac{x^{10}}{10} + C

Thus, the complete result is:

x669x44x1010+C\frac{x^6}{6} - \frac{9 x^4}{4} - \frac{x^{10}}{10} + C

Step 3

9.2 Bepaal die totale geaserde oppervlakte

96%

101 rated

Answer

The area under the curve can be calculated by integrating the function f(x)=x2+2x+3f(x) = -x^2 + 2x + 3 from point A to point B:

A=13(x2+2x+3)dxA = \int_{-1}^{3} (-x^2 + 2x + 3) \, dx

Now, calculate the integral:

  1. Find the antiderivative:

    =[x33+x2+3x]13= \left[-\frac{x^3}{3} + x^2 + 3x\right]_{-1}^{3}

  2. Evaluate at the limits:

    =[333+32+9][(1)33+(1)2+3(1)]= \left[-\frac{3^3}{3} + 3^2 + 9\right] - \left[-\frac{(-1)^3}{3} + (-1)^2 + 3(-1)\right]

    At x = 3: =9+9+9=9= -9 + 9 + 9 = 9

    At x = -1: =13+13=53= \frac{1}{3} + 1 - 3 = -\frac{5}{3}

  3. Combining these results gives:

    =9(53)=9+53=273+53=323= 9 - \left(-\frac{5}{3}\right) = 9 + \frac{5}{3} = \frac{27}{3} + \frac{5}{3} = \frac{32}{3}

Thus, the total area under the curve between points A and B is approximately:

323 units2\frac{32}{3} \text{ units}^2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;