Photo AI

Solve for $x$: 1.1.1 $2x(x + 3) = 0$ 1.1.2 $x(x + 9) = 12$ 1.1.3 $x(x - y) ext{ } ext{and then represent the solution on a number line}$ Solve for $x$ and $y$ if: 1.2.1 $x = 1 - 2y$ and 1.2.2 $3x^2 = 3 + x + y$ 1.3 The diagram below shows a simple pendulum swinging from point A to point C - NSC Technical Mathematics - Question 1 - 2021 - Paper 1

Question icon

Question 1

Solve-for-$x$:--1.1.1--$2x(x-+-3)-=-0$---1.1.2--$x(x-+-9)-=-12$---1.1.3--$x(x---y)--ext{-}--ext{and-then-represent-the-solution-on-a-number-line}$--Solve-for-$x$-and-$y$-if:--1.2.1--$x-=-1---2y$---and---1.2.2--$3x^2-=-3-+-x-+-y$----1.3--The-diagram-below-shows-a-simple-pendulum-swinging-from-point-A-to-point-C-NSC Technical Mathematics-Question 1-2021-Paper 1.png

Solve for $x$: 1.1.1 $2x(x + 3) = 0$ 1.1.2 $x(x + 9) = 12$ 1.1.3 $x(x - y) ext{ } ext{and then represent the solution on a number line}$ Solve for $x$ and... show full transcript

Worked Solution & Example Answer:Solve for $x$: 1.1.1 $2x(x + 3) = 0$ 1.1.2 $x(x + 9) = 12$ 1.1.3 $x(x - y) ext{ } ext{and then represent the solution on a number line}$ Solve for $x$ and $y$ if: 1.2.1 $x = 1 - 2y$ and 1.2.2 $3x^2 = 3 + x + y$ 1.3 The diagram below shows a simple pendulum swinging from point A to point C - NSC Technical Mathematics - Question 1 - 2021 - Paper 1

Step 1

2x(x + 3) = 0

96%

114 rated

Answer

To solve the equation 2x(x+3)=02x(x + 3) = 0, we can factor it to find the values of xx:

  1. Set each factor equal to zero:

    1. 2x=02x = 0

    Solving for xx gives:

    x=0x = 0

    1. x+3=0x + 3 = 0

    Solving for xx gives:

    x=3x = -3.

    Therefore, xx can be 00 or 3-3.

Step 2

x(x + 9) = 12

99%

104 rated

Answer

To solve the equation x(x+9)=12x(x + 9) = 12, we first rewrite it as:

x2+9x12=0x^2 + 9x - 12 = 0

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=1a = 1, b=9b = 9, and c=12c = -12:

  1. Calculate the discriminant:

    b24ac=924(1)(12)=81+48=129b^2 - 4ac = 9^2 - 4(1)(-12) = 81 + 48 = 129

  2. Apply values to the quadratic formula:

    x=9±1292x = \frac{-9 \pm \sqrt{129}}{2}

So, the solutions are:

x1=9+11.3621.18x_1 = \frac{-9 + 11.36}{2} \approx 1.18

x2=911.36210.18x_2 = \frac{-9 - 11.36}{2} \approx -10.18.

Step 3

x(x - y) and then represent the solution on a number line

96%

101 rated

Answer

  1. Solve for yy in terms of xx using x=12yx = 1 - 2y:

    Rearranging gives:

    2y=1xy=1x22y = 1 - x \Rightarrow y = \frac{1 - x}{2}

  2. Substitute this into the second equation 3x2=3+x+y3x^2 = 3 + x + y:

    3x2=3+x+1x23x^2 = 3 + x + \frac{1 - x}{2}

    Solving for xx gives further insight into possible yy values.

To represent the solutions on a number line, mark the points corresponding to both x1x_1 and x2x_2, as well as additional values obtained.

Step 4

Make L the subject of the formula

98%

120 rated

Answer

Starting from:

T=2extπLgT = 2 ext{π} \sqrt{\frac{L}{g}}

  1. Square both sides:

    T2=(2π)2LgT^2 = (2\pi)^2 \frac{L}{g}

  2. Rearranging gives:

    L=gT2(2π)2L = \frac{gT^2}{(2\pi)^2}.

Step 5

Hence, calculate the numerical value of L if g = 9 m/s² and the time T = 1.74s.

97%

117 rated

Answer

Substituting the values into the formula:

L=9(1.74)2(2π)2L = \frac{9 (1.74)^2}{(2\pi)^2}

Calculating:

  1. (1.74)2=3.0276(1.74)^2 = 3.0276

  2. Then, substitute:

    L=93.027639.47840.693extmL = \frac{9 \cdot 3.0276}{39.4784} \approx 0.693 ext{ m}.

Step 6

Evaluate A - B (leave your answer in binary form).

97%

121 rated

Answer

Convert the binary numbers to decimal:

A=11011002=10810A = 1101100_2 = 108_{10}
B=111002=2810B = 11100_2 = 28_{10}

Perform subtraction:

10828=8010108 - 28 = 80_{10}
Convert back to binary:

8010=1010000280_{10} = 1010000_2.

Step 7

Finally, convert your answer in QUESTION 1.4.1 to a decimal number.

96%

114 rated

Answer

To convert 101000021010000_2 to decimal:

  • 126+025+124+023+022+021+0201 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0
  • Equals 64+0+16+0+0+0+0=801064 + 0 + 16 + 0 + 0 + 0 + 0 = 80_{10}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;